

Safety switch CES-C07

There is more than meets the eye to EUCHNER's smallest safety switch. Its actual innovation is on the inside.

The CES-C07 supplements the familiar and frequently used option of connecting sensors in series by adding much more comprehensive diagnostics. Even better: the devices provide process-relevant parameters in real time, thereby guaranteeing information for preventive maintenance. The sensors measure relevant parameters in the surroundings to indicate problems before machine failure can occur. This system can even detect tampering attempts.

When safety module ESM-CB is used, this information is polled automatically from each switch in the chain and provided to your control system via IO-Link. It goes without saying that the switch features functions such as weak-range indication and highly visible display LEDs, as well as a safety classification in category 4 / PL e. This switch can also be approached from three installation positions, allowing it to be mounted in different positions. The standard M12 plug integrated directly into the switch permits connection using standard M12 cables. Another benefit is the option of incorporating mechanical safety switches in the series connection of CES devices.

Approach directions

Three active faces/ eight mounting options

Examples for series connection in the field
Connection to safe
PLCs or safety relays

Safe evaluation unit

Connection to safety module ESM-CB

Safety switch CES-C07

Technical data

Parameter	Value			Unit
	min.	typ.	max.	
Housing material	PBT plastic			
Dimensions	$40 \times 26.5 \times 18$			mm
Weight	0.08			kg
Ambient temperature at $\mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$	-25	-	+55	${ }^{\circ} \mathrm{C}$
Degree of protection	IP65/IP67/IP69/IP69K			
Operating voltage U_{B} (reverse polarity protected, regulated, residual ripple $<5 \%$)	$24 \pm 15 \%$ (PELV)			V DC
External fuse (operating voltage)	0.25	-	8	A
Safety outputs F01A/F01B - Output voltage U(FO1A)/U(FO1B) ${ }^{1)}$	Semiconductor output p-switching, short circuit-proof			
HIGH U(FO1A)	$\mathrm{U}_{\mathrm{B}}-1.5$	-	U_{B}	V DC
HIGH U(FO1B) LOW U(FO1A) $\mathrm{U}(\mathrm{FO} 1 \mathrm{~B})$	0	-	1	
Switching current per safety output	1	-	150	mA
Utilization category acc. to EN IEC 60947-5-2	DC-13 24 V 150 mA			
Monitoring output OD/C ${ }^{\text {1) }}$	Semiconductor output p-switching, short circuit-proof			
- Output voltage	$\mathrm{U}_{\mathrm{B}}-1.5$	-	U_{B}	V DC
- Switching current	1	-	50	mA
Resilience to vibration	In acc. with EN IEC 60947-5-2			
EMC protection requirements	In acc. with EN IEC 60947-5-3/EN IEC 61326-3-1			
Reliability values acc. to EN ISO 13849-1				
Category	4			
Performance Level	PLe			
PFH ${ }_{\text {d }}$	$6 \times 10^{-10} / \mathrm{h}$			
Mission time	20 years			

${ }^{1)}$ Values at a switching current of 50 mA without taking into account the cable length.
Dimension drawing for safety switch CES-I-BR-.-C07...

Dimension drawing for actuator CES-A-BTN-C07

IO-Link communication data CES-C07

The devices transmit both process data, which the system continuously provides to the IO-Link master, and acyclical data.

Process data

Data		Meaning
Guard position	O_{D}	This signal indicates whether the guard is open or closed.
Weak-range indication	O_{w}	This signal provides timely information about whether an actuator is in the limit range of the transponder field. This usually occurs when safety doors settle over time, causing the actuator to drift out of the operating distance. The weak-range indication signals this state early enough for you to readjust the safety door.
Safety outputs switched	O_{M}	This signal indicates whether or not the safety outputs are switched on. The guard must be closed for this purpose, but all other conditions must be met as well: for example, the safety outputs of all previous devices in the series connection must be on.
Message pending	$\mathrm{O}_{\text {I }}$	This signal indicates a pending message. You can retrieve it via the acyclical data.

Acyclical data

Data	Meaning
Series connection version	This value indicates whether all devices in the series connection are mutually compatible.
Sensor order number Sensor version	This function reads the order number and the switch version. The safety switch provides all the data you need to order a replacement.
Number of devices in the switch chain	This information indicates the number of switches comprising the series connection. The information can be evaluated in the control system to identify whether the series connection was changed since the last query, for example. This can identify tampering, for example shortening the chain.
Current diagnostic code	When O, indicates a pending message, the specific error can be read in detail via this code. This lets you know what to do to remedy faults promptly.
Stored diagnostic code	The sensor always saves the penultimate diagnostic signal, allowing you to identify a pending message even retroactively.
Code of current actuator	This function polls the currently read actuator code. On unicode switches: any tampering attempt can be identified if this code differs from the taught-in actuator code. On multicode switches: the current actuator code is compared with one or more codes stored in the control system. Multiple actuators can thereby be permitted in the control system. In combination with the "enable signal" function (see below), the control system can switch off the safety equipment if the comparison results are implausible.
Log-data readout	Function for polling the actuator code in the "blocked" memory. On unicode switches: this code can be displayed to the machine setter to aid in teaching in a new actuator during service and setup.
Code of blocked actuator	The sensor internally logs relevant events. The log-data can be read out.
This function polls the currently taught-in actuator code.	
On unicode switches: any tampering attempt can be identified if this code differs from the current	
actuator code.	

Safety module ESM-CB

Technical data

Parameter	Value			Unit
	min.	typ.	max.	
Housing material	Polyamide PA6.6			
Dimensions	$112 \times 18 \times 114.5$			mm^{3}
Ambient temperature	-25	-	+60	${ }^{\circ} \mathrm{C}$
Storage temperature	-40	-	+85	${ }^{\circ} \mathrm{C}$
Degree of protection	IP 20			
Installation method	Mounting rail 35 mm acc. to DIN EN 60715 TH35			
Connection	Plug-in spring terminals			
Input circuit 1	For floating contacts and semiconductor outputs without communication			
Input circuit 2	For semiconductor outputs from EUCHNER product family $B R$			
Number of safety contacts	2			
Operating voltage	$24-15 \% \ldots+10 \%$			V DC
LED displays		$\begin{aligned} & \text {-ED re } \\ & \text { LED } \\ & \text { E1 an } \\ & \text { K2 LE } \\ & \text { nk LEI } \end{aligned}$	s green	
Normally open output contacts	Relay contacts floating and positively driven (redundant)			
Switching voltage	Max. 250			V AC/DC
Switching current	Max. 6			A
IO-Link	According to IO-Link specification V1.1 Device with IO-Link communication			
Safety classification	Category 4 / PL e according to EN ISO 13849-1*			

* = Taking into account a maximum current to be observed and a maximum number of operating cycles per year.

Dimension drawing for safety module

IO-Link communication data ESM-CB

Process data

Data		Meaning
State of safe input circuit 1	SO	This indicates whether or not input circuit 1 is closed.
State of safe input circuit 2	S 1	This indicates whether or not input circuit 2 is closed.
State of outputs K1 and K2	O_{M}	This indicates whether or not the safety relays are switched on. Both input circuits must be closed and the start signal must be present for this purpose.
Start requested	O_{Q}	This signal indicates whether or not any start button used has already been pressed.
Current diagnostic code		The most important messages are transmitted directly into process data.

Acyclical data

Data	Meaning
Order number of the ESM-CB Version of the ESM-CB	The safety module provides all the data needed to order a replacement.
Expanded diagnostic code	When the current diagnostic code indicates a pending message, the specific error can be read in detail via this code. This lets you know what to do to remedy faults promptly.

Acyclical output data

Data	Meaning
Enabling signal	The control system can influence whether or not the safe relay contacts have to be switched on. The safe relay contacts will not be switched on without the enabling signal, even if all other safe conditions have been met.

Safety module ESM-CB with IO-Link

Measuring only 18 mm in width, the slimline safety module ESM-CB is multifunctional: it is an evaluation unit, safety relay and IO-Link device in one. Everything you need to secure a small machine. A special advantage is the option of transmitting all relevant sensor and device data via IO-Link.

You can connect two safety circuits to the inputs: one with which the device can monitor an emergen-cy-stop chain or the switching contacts of mechanical safety switches. Another one is used for evaluating a switch chain comprising the new safety switches CES-C07. Two redundant, safe relay contacts enable the direct switching of loads up to 6 Amps .

The safety module is in a constant dialog with the connected devices, polling each sensor for information including the system state, the ambient conditions, and the sensor's data such as the sensor type and version number. This allows you to communicate at Industry 4.0 level.

Block diagram

Advantages at a glance

CES-C07

- Minimum space requirement thanks to compact design
- Variable approach and mounting options
- Unicode and multicode versions to suit the application
- Two safe semiconductor outputs
- Switch chains up to 200 m long possible
- Series connection with full diagnostics (only in combination with ESM-CB)

ESM-CB

- Two safety inputs for up to 20 safety switches
- Two safety outputs
- Diagnostic function via IO-Link
- Category 4 / PL e according to EN ISO 13849-1
- Compact version measuring only 18 mm in width
- Data for Industry 4.0 applications

Ordering table for safety switch CES-I-BR-.-C07 (available from autumn 2018)

Description	Order number/item designation	
	Unicode	Multicode
Safety switch CES-I-BR-C07	157920	156233
Cube-shaped; plug connector M 12	CES-I-BR-U-CO7-SA-157920	CES-I-BR-M-C07-SA-156233

Ordering table for safety module ESM-CB (available from autumn 2018)

| Ordering table for safety module ESM-CB (available from autumn 2018) |
| :--- | :--- | :--- |
| Description |
| Safety module ESM-CB |

Tel. +497117597-0
Fax +49711753316
info@euchner.de www.euchner.com

EUCHNER
More than safety.

