Трехфазные двигатели

Вариант с монтажом на лапы В3 Пример: DM80GC4 IE2- B3

C фланцевым креплением B5 Пример: DA132MX4 IE2- B5

C фланцевым креплением B14 Пример: DM71G6 - B14K

Исполнение лапы - фланец B3/B5
Пример: DM90SC4 IE2- B3/B5

Технические характеристики

Двигатели соответствуют следующим стандартам:
DIN EN 60034 Вращающиеся электрические машины, рабочие характеристики и параметры
IEC60072 Герметичный двигатель с вентиляторным охлаждением с короткозамкнутым ротором, монтажные
размеры и паспортные данные
DIN42948 Монтажные фланцы для электрических машин

- Число полюсов: 2 полюс, 4 полюс, 6 полюс, 8 полюс, 4/2 полюс, 8/4 полюс, 8/2 полюс
- Стандарт защиты IP54 (Двигатель), IP55 (Мотор-редуктор)
- Класс изоляции 155
- Напряжение/Частота
Δ / Y 230/400V 50Гц 1)
$\Delta /$ Y 230/400V 50Гц // Y 460V 60Гц 1)
$\Delta / Y 400 / 690$ V 50 Гц
$\Delta / Y 400 / 690$ V 50 Гц // $\Delta 460 \mathrm{~V} 60$ цц
$\Delta /$ Y 290/500 V 50Гц (DM63..DM112)
$\Delta 500 \mathrm{~V} 50$ цц (DA132..DA225)
200V 50Гц

1) Эталонное напряжение

Возможны различные напряжения и частоты
Варианты:

- UL-версия
- ССС-версия
- Защита от воды и пыли IP65

Дополнительные варианты электродвигателя:

- Взрывозащищенное исполнение двигателя в соответствии с ATEX, для эксплуатации в зоне 1,2,21 или 22
- Огнестойкий Двигатель EExd
- двигатели с тормозом с уменьшенным шумом или со сдвоенным тормозом
- Ограничитель обратного хода RS
- Моментный двигатель
- однофазный двигатель 230 V 50 цц (рабочим конденсатором, Схема Штейнмеца (для трёхфазного двигателя в однофазной сети))

Мощность двигателя Pn

Приведенное в таблице значение действительно при следующих условиях:

- Рабочий цикл S1
- Максимальная окружающая температура $+40^{\circ} \mathrm{C}$
- Установка на высоте не более 1000 м над уровнем моря

Доступная мощность двигателя для различных условий рассчитывается следующим образом: $\mathrm{P}=\mathrm{Pn} \cdot \mathrm{fs} \cdot \mathrm{ft} \cdot \mathrm{fh}$
Коэффициент fs для различных режимов работы

Режим работы		fs
S1	Продолжительный режим работы. Работа с постоянной нагрузкой. Двигатель достигает установившейся температуры	1.0
S2-10min	Кратковременный режим работы. Работа с неизменной номинальной нагрузкой	1.4
S2-30min	сменяющаяся остановом. За время паузы двигатель остывает до температуры	1.25
S2-60min	окружающей среды.	1.1
S3-15\%ED	Повторно-кратковременный режим. Работа кратковременные периоды с неизменной	1.4
S3-25\%ED	номинальной нагрузкой чередующаяся с периодами выключения двигателя, причем в	1.3
S3-40\%ED	обоих случаях температура двигателя не успевает достигнуть установившегося	1.2
S3-60\%ED	значения.	1.1

S4 .. S10	Повторно-кратковременный режим с частыми пусками. В этом режиме пуски и стопы оказывают существенное влияние на нагрев двигателя. Характеризуется продолжительностью включения в \%, числом пусков в час и коэффициентом инерции привода.
	По запросу

Коэффициент ft для различной температуры окружающей Коэффициент fh для различной высоты над уровнем моря
среды θ h

$\theta \leq 40^{\circ} \mathrm{C}$	$\mathrm{ft}=1.0$	$\mathrm{~h} \leq 1000 \mathrm{~m}$	$\mathrm{fh}=1.0$
$40^{\circ} \mathrm{C}<\theta \leq 50^{\circ} \mathrm{C}$	$\mathrm{ft}=0.87$	$1000 \mathrm{~m}<\mathrm{h} \leq 2000 \mathrm{~m}$	$\mathrm{fh}=0.95$
$50^{\circ} \mathrm{C}<\theta \leq 60^{\circ} \mathrm{C}$	$\mathrm{ft}=0.75$	$2000 \mathrm{~m}<\mathrm{h} \leq 3000 \mathrm{~m}$	$\mathrm{fh}=0.87$

Допустимые радиальные нагрузки на выходной вал

			$\mathrm{F}_{\mathrm{R} 1}[\mathrm{H}]$			
Двигатель	Выходной вал dxl [мм]	$\begin{gathered} \mathrm{K} 1 \\ {[\mathrm{MM}]} \end{gathered}$	$\begin{aligned} & 3000 \\ & 1 / \mathrm{min} \end{aligned}$	$\begin{gathered} 1500 \\ 1 / \mathrm{min} \end{gathered}$	$\begin{gathered} 1000 \\ 1 / \mathrm{min} \end{gathered}$	$\begin{gathered} 750 \\ 1 / \mathrm{min} \end{gathered}$
DM63	11x23	155.5	430	540	620	680
DM71	14×30	176	420	530	610	670
DM80	19x40	200	700	880	1010	1110
DM90	24×50	217	750	950	1080	1190
DM100	28×60	275	1050	1330	1520	1670
DM112	28×60	286	1520	1920	2190	2410
DA132	38×80	368.5	1670	2100	2410	2650
DA160	42×110	495	1790	2250	2580	2840
DA180	48×110	495	1870	2360	2060	2970
DA200	55×110	590.5	2820	3550	4070	4480
DA225	60x140	665.5	4910	6190	7090	7800

Схемы с условиями выбора смотрите на странице 6/7

Таблица выбора

Трехфазные двигатели 2 полюс

Двигатель	$\begin{gathered} \mathrm{Pn} \\ {[\mathrm{KBt}]} \end{gathered}$	$\begin{gathered} \text { n1 } \\ {[1 / м и н]} \end{gathered}$	$\begin{gathered} \text { In } \\ (400 \mathrm{~B}) \end{gathered}$	$\cos \varphi$	$\begin{gathered} \hline \eta-\mathrm{Pn} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}-3 / 4 \mathrm{Pn} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \eta-1 / 2 \mathrm{Pn} \\ {[\%]} \end{gathered}$	$\mathrm{Ma} / \mathrm{Mn}$	la/ln	Mk/Mn	$\begin{gathered} \mathrm{JE} \\ {\left[\mathrm{Kгсм}^{2}\right]} \end{gathered}$	$\sim \mathrm{kg}$	Тормоз
DM71K2	0.37	2800	1	0.83	76.4	75.8	70.7	2.4	4.2	2.7	3.5	5.6	B02
DM71G2	0.55	2800	1.3	0.83	77.5	76.6	73.7	2.9	5.0	3.0	4.6	6.4	B02
DM80K2 IE2	0.75	2830	1.65	0.82	79.3	79.3	75.8	2.8	5.8	3.3	6.8	8.1	B03/B02
DM80G2 IE2	1.1	2840	2.4	0.81	81.7	81.5	79	3.1	6.1	3.6	9.0	9.5	B04/B03
DM90S2 IE2	1.5	2850	3.2	0.83	81.3	81.8	79.5	2.2	5.9	3.1	13.7	11.8	B04/B03
DM90L2 IE2	2.2	2880	4.5	0.83	85.3	85.3	83	2.3	6.9	3.7	18.3	14.2	B04/B03

Трехфазные двигатели 4 полюс

Двигатель	$\begin{gathered} \mathrm{Pn} \\ {[\mathrm{KBr}]} \end{gathered}$	$\begin{gathered} \mathrm{n} 1 \\ {[1 / \mathrm{m} и \boldsymbol{]}]} \end{gathered}$	$\begin{gathered} \text { In } \\ (400 \mathrm{~B}) \end{gathered}$	$\cos \varphi$	$\begin{gathered} \hline \eta-\mathbf{P n} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{\eta}-3 / 4 \mathrm{Pn} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{\eta}-1 / 2 \mathrm{Pn} \\ {[\%]} \end{gathered}$	Ma/Mn	la/ln	Mk/Mn	$\begin{gathered} \mathrm{JE} \\ {\left[\mathrm{KrCM}^{2}\right]} \end{gathered}$	$\sim \mathrm{kg}$	Тормоз
DM63K4	0.12	1380	0.47	0.61	61.3	60.7	53.6	2.1	3	2.4	2.1	4.1	B02
DM63G4	0.18	1380	0.67	0.66	58.2	57.6	52.4	1.8	2.7	2	2.8	4.8	B02
DM71K4	0.25	1410	0.79	0.64	71.4	69.8	63.9	2.5	4.3	2.9	5.6	5.6	B02
DM71G4	0.37	1410	1.0	0.71	75.5	75.9	72.1	2.5	4.6	2.8	7.3	6.4	B02
DM80K4	0.55	1405	1.48	0.72	76.1	75.9	71.8	2.3	4.3	2.5	12.8	8.1	B03/B02
DM80GC4 IE2	0.75	1410	1.89	0.71	80.1	80.6	78.4	2.9	5.0	2.9	16.5	9.5	B03/B02
DM90SC4 IE2	1.1	1415	2.45	0.79	81.8	82.7	81.4	2.5	5.4	2.8	23.5	11.8	B04/B03
DM90LC4 IE2	1.5	1410	3.35	0.77	83.2	83.5	81.0	2.9	6	3.3	31.3	14.2	B04/B03
DM100LC4 IE2	2.2	1410	4.8	0.79	84.6	84.5	82.8	2.7	6.3	3.2	50	22.2	B05/B04
DM100LD4 IE2	3	1410	6.4	0.79	85.6	85.9	84.5	2.8	6.1	3.1	65	24.2	B05/B04
DM112MX4 IE2	4	1425	8.6	0.78	86.9	87.1	85.9	2.9	6.8	3.4	119	31.6	B06/B05
DA132S4 IE2	5.5	1455	10.9	0.83	87.7	87.9	86.3	2.6	8	3.3	180	45.4	B07/B06
DA132MX4 IE2	7.5	1455	14.5	0.84	88.7	88.9	87.3	2.5	8	3.2	240	51.8	B07/B06
DA160MS4 IE2	9.2	1470	16.9	0.88	89.3	88.9	86.5	1.9	7.2	3	520	65.3	B08/B07
DA160M4 IE2	11	1465	20.5	0.86	89.8	90.3	89.3	2.3	7.9	3.3	580	75.3	B08/B07
DA160L4 IE2	15	1465	27	0.88	90.6	90.9	90.5	2.7	8.2	3.4	780	92.6	B09/B08
DA180MC4 IE2	18.5	1465	34.5	0.85	91.2	91.5	91	2.7	7.8	3.3	750	98.6	B09/B08
DA180LC4 IE2	22	1465	41	0.85	91.6	91.7	91.2	2.8	7.9	3.4	940	110.6	B09
DA200L4 IE2	30	1480	54.5	0.86	92.3	92.5	91.8	3.2	8.9	3.3	2700	232	B10/B09
DA225SX4 IE2	37	1475	68	0.85	92.7	92.7	92	2.9	8.5	3.1	2880	280	B10
DA225MX4 IE2	45	1475	82	0.85	93.1	93.2	92.4	3	8.5	3.2	3430	300	B10

Трехфазные двигатели 6 полюс

Двигатель	$\begin{gathered} \mathrm{Pn} \\ {[\mathrm{KBT}]} \end{gathered}$	$\begin{gathered} \mathrm{n} 1 \\ {[1 / \mathrm{m} и н]} \end{gathered}$	$\begin{gathered} \text { In } \\ (400 \mathrm{~B}) \end{gathered}$	$\cos \varphi$	$\begin{gathered} \boldsymbol{\eta} \\ {[\%]} \end{gathered}$	$\begin{gathered} \mathrm{\eta}-3 / 4 \mathrm{Pn} \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \eta-1 / 2 \mathrm{Pn} \\ {[\%]} \\ \hline \end{gathered}$	Ma/Mn	la/ln	Mk/Mn	$\begin{gathered} \mathrm{JE} \\ {\left[\mathrm{KrCM}^{2}\right]} \end{gathered}$	$\sim \mathrm{kg}$	Тормоз
DM63G6	0.12	910	0.54	0.67	57.4	53.3	45	2.7	2.8	2.8	4.2	4.8	B02
DM71K6	0.18	925	0.59	0.67	65.7	63.9	57.8	1.8	3.3	2.2	9.1	5.6	B02
DM71G6	0.25	930	0.82	0.65	68	65.5	59.4	2.1	3.3	2.4	12	6.4	B02
DM80K6	0.37	930	1.28	0.64	66.5	63.5	56.1	2.2	3.4	2.6	22	8.1	B03/B02
DM80G6	0.55	940	1.76	0.63	71	69.2	63.5	2.4	3.6	2.6	28	9.5	B03/B02
DM90SC6 IE2	0.75	950	2.2	0.64	76.2	75.8	71.1	1.6	2.9	1.8	37	11.8	B04/B03
DM90LC6 IE2	1.1	920	3.15	0.65	78.1	77.9	75.5	2.6	4.1	2.8	50	14.2	B04/B03
DM100LX6 IE2	1.5	950	3.95	0.68	79.8	79.6	76.2	2.3	4.5	2.7	100	22.2	B05/B04
DM112M6 IE2	2.2	950	5.6	0.68	82.7	82.8	80	2.5	4.8	2.6	180	31.6	B06/B05

Трехфазные двигатели 8 полюс

Двигатель	$\begin{gathered} \mathrm{Pn} \\ {[\mathrm{KBt}]} \end{gathered}$	$\begin{gathered} \text { n1 } \\ \text { [1/мин] } \end{gathered}$	$\begin{gathered} \text { In } \\ (400 \mathrm{~B}) \end{gathered}$	$\cos \varphi$	$\begin{gathered} \eta \\ {[\%]} \end{gathered}$	$\mathrm{Ma} / \mathrm{Mn}$	la/ln	Mk/Mn	$\begin{gathered} \mathrm{JE} \\ {\left[\text { кгсм }^{2}\right]} \end{gathered}$	$\sim \mathrm{kg}$	Тормоз
DM71K8	0.12	690	0.56	0.58	52.9	1.7	2.4	2	9.1	5.6	B02
DM71G8	0.18	670	0.78	0.62	54.9	1.7	2.4	1.9	12	6.4	B02
DM80K8	0.25	690	1.23	0.56	52.8	1.9	2.3	2.2	22	8.1	B03/B02
DM80G8	0.37	690	1.75	0.55	55.1	2.1	2.4	2.3	28	9.5	B03/B02
DM90L8	0.55	680	1.84	0.65	66.9	1.6	2.7	1.8	50	14.2	B04/B03
DM100L8	0.75	700	2.35	0.65	70.2	1.5	3.4	2.1	77	18.5	B05/B04
DM100LX8	1.1	690	3.5	0.65	69.5	1.5	3	1.9	100	22.2	B05/B04
DM112M8	1.5	700	4.9	0.62	71.7	1.7	3.1	1.9	180	31.6	B06/B05

Pn	Номинальная мощность
n 1	Номинальное число оборотов
In	Номинальный ток
$\cos \varphi$	Коэффициент мощности
η	КПД
$\mathrm{Ma} / \mathrm{Mn}$	Относительный пусковой вращающий момент
$\mathrm{la} / \mathrm{In}$	Относительный пусковой ток
$\mathrm{Mk} / \mathrm{Mn}$	Относительный вращающий момент вытягивания
JE	Момент инерции

Варианты двигателя

B - Тормоз COMBISTOP

- нагружаемый пружинами двухдисковый предохранительный тормоз
- Стандарт защиты: IP54
- соединение через контакты в распределительной коробке
- обеспечение регулировки с учетом износа фрикционных накладок без разборки
- уменьшение крутящего момента до 50\% возможного
- Эталонное напряжение: 230VAC, 400VAC, 24VDC

Варианты:

- ручное отпускание тормоза MB
- Защита от воды и пыли IP65

Режим работы

Тормоз отпускается за счет возбуждения постоянного тока катушки тормоза (2) или с помощью устройства ручного отпускания MB (3), которое может быть установлено в качестве опции.
В обесточенном состоянии торможение достигается с помощью силы пружины (1).
Регулировочные винты (5) используются для регулировки номинального воздушного зазора (X) в случае износа.

Технические данные

Тормоз	$\begin{gathered} \hline \mathrm{Mbr} \\ {[\mathrm{Hm}]} \end{gathered}$	Mbred [Нм]			$\begin{gathered} \mathrm{JB} \\ {\left[\kappa г \mathbf{c м}{ }^{2}\right]} \end{gathered}$	$\begin{aligned} & \hline \mathbf{P 2 0} \\ & {[B т]} \end{aligned}$	$\begin{gathered} \text { t2 } \\ \text { [мсек } \end{gathered}$]	t11~ [мсек]	$\begin{gathered} \text { t11= } \\ \text { [мсек] } \end{gathered}$	$\begin{gathered} \hline \text { WR0.1 } \\ {\left[J * 10^{\wedge} 6\right]} \end{gathered}$	WRmax [$\mathrm{J}^{*} 10^{\wedge} 3$]	$\begin{gathered} \mathrm{X} \\ {[\mathbf{M м}]} \end{gathered}$	$\begin{gathered} \mathrm{Xn} \\ \text { [мм }] \end{gathered}$	$\begin{gathered} \mathrm{hL} \\ \text { [Mм] } \end{gathered}$	$\sim \mathrm{kg}$
B02	5	2.5	1.5		0.3	25	40	70	10	7.5	5.3	0.2	0.4	106	1.4
B03	10	7.5	5	3	0.7	30	55	100	15	12.5	7.5	0.2	0.5	114	2.0
B04	20	15	10	6	1.4	30	90	180	25	19.1	18	0.2	0.6	128	3.6
B05	36	27	18	11	3.5	48	110	220	25	28.0	28	0.2	0.6	168	5.7
B06	70	53	35	21	5.6	62	240	260	25	28.8	38	0.3	1.0	176	9.1
B07	100	75	50	30	16	65	220	400	40	35.7	49	0.3	1.0	225	15
B08	150	113	75	45	30	75	320	700	50	44.2	56	0.4	1.2	235	24
B09	250	188	125	75	75	80	350	900	60	69.0	78	0.4	1.2	256	34
B10	500	375	250	150	210	130	400	1400	100	80.0	100	0.5	1.5	335	49

Mbr	Статический тормозной момент после завершения фазы приработки
Mbred	возможен уменьшенный тормозной момент
JB	Момент инерции
P20	Номинальное значение возбуждения при $20^{\circ} \mathrm{C}$
t2	Время отпускания, время от подключения тока до начала уменьшения вращающего момента
t11~	Время запаздывания сцепления для переключения на стороне переменного тока (Рис. 1,3) Время от отключения тока до момента нарастания вращающего момента
t11=	Время запаздывания сцепления для переключения на стороне постоянного тока (Рис. 2) Время от отключения тока до момента нарастания вращающего момента
WR0.1	работа сил трения до истирания 0.1 мм
WRmax	допустимая работа сил трения для аварийного останова от 3000 1/мин (B08..В10-1500 1/min)
X	Номинальный зазор
Xn	Зазор, при котором рекомендуется повторная регулировка

Заданное время включения применяется к номинальному зазору и номинальному вращающему моменту. Оно связано со средними значениями и зависит от типа выпрямления и температуры обмотки.

Электрическое подключение

Figure 1: Переключение на стороне переменного тока

- Тормоз включается независимо от напряжения двигателя, Время запаздывания сцепления t11~
- Подходит для работы с преобразователем частоты

Figure 2: Переключение на стороне постоянного тока

- Включение тормоза на стороне постоянного и переменного тока приводит к более быстрому времени запаздывания сцепления $\mathrm{t11=}$.

Рисунок 3: Тормоз готов для подключения

- Подача напряжения от присоединительного щитка двигателя.
- Тормоз включается вместе с напряжением двигателя, Время запаздывания сцепления t11~
- По сравнению с рис. 1 дополнительное соединение с тормозом не требуется
- Не Подходит для работы с преобразователем частоты и для асинхронных двигателей с переключением полюсов

Защитный кожух

Защитный кожух препятствует проникновению посторонних объектов или жидкостей при вертикальном расположении двигателя

Двигатель	L4	АС1
DM63..DM80	26	122
DM90..DM112	30	176
DA132	42	230
DA160..DA225	43	$240 / 338$ 1)

1) Принудительная вентиляция

F - Принудительная вентиляция

- Стандарт защиты IP65
- Номинальное напряжение Uf=3 ~400V 50Гц // 3 ~460V 60Гц
- DM71 .. DA132: соединение через контакты в распределительной коробке
- DA160 .. DA225: Соединение осуществляется в дополнительной распределительной коробке, смонтированной на колпаке вентилятора.

Двигатель	If
	$3 \sim 400 \mathrm{~V}$ 50Гц
$3 \sim 460 \mathrm{~V} 60{ }_{\mathbf{ц}}$	
DM71 .. DA132	0.18 A
DA160 .. DA225	0.56 A
If Номинальный ток вынужденной вентиляции	

Защита электродвигателя

Могут применяться следующие виды защиты электродвигателя:
TW - Термисторный датчик с положительным температурным коэффициентом
TS - Термореле
KTY - датчика KTY

I - Инкрементальный датчик положения

Стандартная версия
импульсов/оборот.
Сигналы
Интерфейс
напряжение питания
Потребляемый ток
Допустимая нагрузка / канал
Стандарт защиты
Датчик положения устанавливается под колпаком вентилятора электродвигателя и защищается от влияния окружающей среды

1024

сигнальный соединитель 12полюс

A, /A, B, /B, 0, /0
RS422 (TTL)
$5 \mathrm{VDC} \pm 5 \%$
40mA / max. 90mA
$\pm 20 \mathrm{~mA}$
IP65

ответная часть разъема по желанию пользователя

EAM - Датчик абсолютных значений, мультиповоротный

Стандартная версия
Разрешение с одним поворотом 13bit
Разрешение с мультиповоротами 12bit (4096 rev)
кодирование
периоды Sin/Cos
напряжение питания
Потребляемый ток
Допустимая нагрузка / канал
Стандарт защиты
системная позиция датчика
KEB F5-Multi

Датчик положения устанавливается под колпаком вентилятора электродвигателя и защищается от влияния окружающей среды

сигнальный соединитель 17полюс

ответная часть разъема по желанию пользователя

Контакт	Сигнал
10	OV
11	
12	OV Датчик
2	+5 V
5	+5V Датчик
6	А
8	IA
1	B
3	/В
4	0

Контакт	Сигнал
10	OV
7	+5V
8	clock
9	/clock
14	data
17	/data
1	set
2	dir
15	A
16	IA
12	B
13	/B

Второй конец вала WE2 и маховик

Второй конец вала можно использовать для фиксирования маховика или для передачи момента двигателя на нагрузку без радиальных усилий Пожалуйста, при наличии радиальных нагрузок на второй конец вала обратитесь к производителю

	D13	D14	D15	E13	E14	E15	E16	E17	F13	G13
DM63 DM11	11	100	M4	23	28	18	2.5	46	4	12.5
DM80	14	100	M5	30	35	25	2.5	52	5	16
DM90	19	160	M6	40	45	32	4	66	6	21.5
DM100 DM112	24	160	M8	50	55	40	5	75	8	27
DA132	32	225	M12	80	85	70	5	108	10	35
DA160	38	225	M12	80	90	70	5	113	10	41
DA180 DA200 DA225	42	280	M16	110	120	100	5	144	12	45

Положение распределительной коробки

Пример: 270С относится к распределительной коробке в С для ввода кабеля под 270о Исполнение кабеля С

Местоположение других дополнительных устройств двигателя (устройства ручного растормаживания, подключения принудительной вентиляции, подключения датчика) аналогично и не зависит от местоположения клеммной коробки

Пример: 90А, ручное отпускание тормоза 270

Исполнение кабеля

	нормальный	Тормоз или TW/TS или Принудительная вентиляция	Тормоз + TW/TS или Тормоз + Принудительная вентиляция или Принудительная вентиляция + TW/TS	$\begin{gathered} \text { Topмоз + TW/TS + Принудительная } \\ \text { вентиляция } \end{gathered}$
DM63..DM112	1xM25	2xM25	2xM25+1xM16	1xM25+3xM16
DA132	2xM32	2xM32	$2 \mathrm{MM} 32+1 \mathrm{xM} 16$	$2 \mathrm{MM} 32+1 \mathrm{xM} 16$
DA160..DA180	2xM40	2xM40	$2 \mathrm{MM} 40+1 \mathrm{MM16}$	$2 \mathrm{xM} 40+1 \mathrm{xM16}$
DA225	2xM50	2xM50	$2 \mathrm{M} 50+1 \mathrm{xM} 16$	$2 \mathrm{MM} 50+1 \mathrm{xM} 16$

разъем HAN 10ES

разъем M23
Двигатели: DM63..DM112

Соединитель питания (силовой разъем) размеры 1, 8полюс 1)	Контакт	Сигнал
	1	U
	(1)	PE
	3	W
	4	V
	A	Тормоз +
	B	Тормоз -
	C	TW
	D	TW

[^0]

Система: HAN 10ES (Harting)
Umax=500VAC, Imax = 16A
Независимая вентиляция, инкрементальный энкодер или тормоз с ручной разблокировкой устанавливаются 90° или 270° к разъему

Размеры

В3 - Вариант с монтажом на лапы

B5-C фланцевым креплением

B14-C фланцевым креплением

	DM63	DM71	DM80	DM90S/L	DM100	DM112	DA132S/MX	DA160M/L	DA180MC/LC	DA200	DA225SX/MX
B3											
A		112	125	140	160	190	216	254	279	318	356
AA		21	24	24	30	32	55	69	85	100	87
AB		132	150	165	190	220	256	320	352	403	440
B		90	100	100/125	140	140	140/178	210/254	241/279	305	286/311
BA		-	-	-	-	-	50	62	75	95	70
BB		102	120	125/150	168	175	180/218	260/304	300/338	380	341/366
C		45	50	56	63	70	89	108	121	133	149
H		71	80	90	100	112	132	160	180	200	225
HA		5	5	5	6	6	18.5	22	22	27	35
K		$\varnothing 7$	Ø10	$\varnothing 10$	$\varnothing 12$	$\varnothing 12$	Ø12	$\varnothing 14$	$\varnothing 14$	¢18	$\varnothing 18$

B5

LA		10	10	10	11	11	12	13	13	15	16
\mathbf{M}		130	165	165	215	215	265	300	300	350	400
\mathbf{N}		110	130	130	180	180	230	250	250	300	350
\mathbf{P}		160	200	200	250	250	300	350	350	400	450
\mathbf{S}		$\varnothing 10$	$\varnothing 11$	$\varnothing 12$	$\varnothing 14$	$\varnothing 14$	$\varnothing 14$	$\varnothing 18$	$\varnothing 18$	$\varnothing 18$	$\varnothing 18$
\mathbf{T}		3.5	3.5	3.5	4	4	4	5	5	5	5

B14G

M N	$\varnothing 115$	$\varnothing 130$	$\varnothing 130$	Ø165	Ø165					
	$\varnothing 95$	Ø110	$\varnothing 110$	Ø130	Ø130					
P	Ø140	$\varnothing 160$	$\varnothing 160$	Ø200	¢200					
S	M8	M8	M8	M10	M10					
T	3	3.5	3.5	3.5	3.5					

B14K

\mathbf{M}	$\varnothing 75$	$\varnothing 85$	$\varnothing 100$	$\varnothing 115$	$\varnothing 130$	$\varnothing 130$					
\mathbf{N}	$\varnothing 60$	$\varnothing 70$	$\varnothing 80$	$\varnothing 95$	$\varnothing 110$	$\varnothing 110$					
\mathbf{P}	$\varnothing 90$	$\varnothing 105$	$\varnothing 120$	$\varnothing 140$	$\varnothing 160$	$\varnothing 160$					
\mathbf{S}	M5	M6	M6	M8	M8	M8					
\mathbf{T}	2.5	2.5	3	3	3.5	3.5					

D	11 k 6	14 k 6	19 k 6	24 k 6	28 k 6	28 k 6	38 k 6	42 k 6	48 k 6	55 m 6	$60 \mathrm{m6}$
DB	M4	M5	M6	M8	M10	M10	M12	M16	M16	M20	M20
E	23	30	40	50	60	60	80	110	110	110	140
E1	16	22	32	40	50	50	70	100	100	100	125
E2	3.5	4	4	5	5	5	5	5	5	5	7.5
F	4	5	6	8	8	8	10	12	14	16	18
GA	12.5	16	21.5	27	31	31	41	45	51.5	59	64

AC	110	124	140	158	178	198	245	311	311	356	356
AD	113.5	122	129	136.5	145.5	155.5	188	250	250	291	299
XA	113	113	113	113	113	113	117	140	140	226	226
XB	113	113	113	113	113	113	142	140	140	226	226
XC	45.5	56.5	54	60	73	72.5	$143.5 / 194.5$	107.5	$107.5 / 346.5$	230	260
L	210.5	238.5	268	$292 / 317$	360.5	374	$485 / 536$	627	$627 / 657$	738	$798 / 828$

$\Delta \mathrm{L}$

B	59	57	66	74	79	86	99	85	120	120	120
I	56	56	56	56	56	56	96	96	96	96	96
EAM	82	87	95	105	119	124	96	96	96	96	96
F		90	93	98	106	113	99	85	151	151	121
B I	115	113	122	130	135	142	195	181	216	216	216
B EAM	141	144	161	179	198	210	195	181	216	216	216
B F		135	143	170	187	199	156	222	286	286	256
F I		135	143	140	139	149	156	222	286	286	256
F EAM		168	170	170	187	199	156	222	286	286	256
B F I		183	190	194	214	226	273	222	286	286	281
B F EAM		213	220	236	247	262	273	222	286	286	281

Тормоз
Принудительная вентиляция
Инкрементальный датчик положения
RS Ограничитель обратного хода

	DM63	DM71	DM80	DM90S/L	DM100	DM112	DA132S/MX	DA160	DA180MC/LC	DA200	DA225SX/MX	PG Редуктор	
AC	110	124	140	158	178	198	245	311	311	356	356		
AD	113.5	122	129	136.5	145.5	155.5	188	250	250	291	299		
XA	113	113	113	113	113	113	117	140	140	226	226		
XB	113	113	113	113	113	113	142	140	140	226	226		
XC	45.5	56.5	54	60	73	72.5	143.5/194.5	107,5	107.5/346.5	230	260/260		
LM	202	224.5	245.5									105	G0, S0
	201	224.5	244.5	258/283	320							120	G1, S1, F2, K2
	198	220.5	241.5	253/278	314.5	334.5						140	G2, S2, F3, K3
	198.5	220	242	253.5/278.5	314.5	333.5	435/486					160	G3, S3, F4, K4
		216.5	237.5	251/276	309.5	329	431.5/482.5	539.5				200	G4, S4, F5, K5
			232.5	246/271	303.5	324	428/479	532	532/562	639		250	G5, F6, K6
				239/264	299.5	317	421/472	526	526/556	633		300	G6, F7, K7
					294.5	312	413/464	522	522/552	627.5	657.5/687.5	350	G7, F8, K8
							396.5/447.5	503.5	503.5/533.5	610.5	640.5/670.5	400	G8, K9
								491.5	491.5/521.5	598	628/658	450	G9

$\Delta \mathrm{L}$	DM63	DM71	DM80	DM90	DM100	DM112	DA132S	DA132MX	DA160	DA180MC	DA180LC	DA200	DA225SX	DA225MX
B	59	57	66	74	79	86	99	85	120	120	120	139	139	139
RS	0	0	0	0	0	0	0	0	120	120	120	139	139	139
I	56	56	56	56	56	56	96	96	96	96	96	96	96	96
EAM	82	87	95	105	119	124	96	96	96	96	96	96	96	96
F		90	93	98	106	113	99	85	151	151	121	154	264	154
B I	115	113	122	130	135	142	195	181	216	216	216	235	235	235
B EAM	141	144	161	179	198	210	195	181	216	216	216	235	235	235
B F		135	143	170	187	199	156	222	286	286	256	294	264	294
F I		135	143	140	139	149	156	222	286	286	256	294	264	294
F EAM		168	170	170	187	199	156	222	286	286	256	294	264	294
B F I		183	190	194	214	226	273	222	286	286	281	294	284	294
B F EAM		213	220	236	247	262	273	222	286	286	281	294	284	294

B	Тормоз
F	Принудительная вентиляция
l	Инкрементальный датчик положения
EAM	Датчик абсолютных значений, мультиповоротный
RS	Ограничитель обратного хода

[^0]: 1) ответная часть разъема по желанию пользователя

 Тормоз: Umax $=250 \mathrm{~V}$

