

INSTRUCTIONS

Buttons and navigation

- The motor "back" button is on every slide in the upper right corner. It will bring you back to the LCM entry slide.
- 2. Within chapters, you can return to the start of that **LCM chapter** by clicking on the LCM symbol.
- **3.** The platforms symbol will take you to the **platforms solutions slide**.

The Electric motor - SKF solutions throughout its lifecycle

Electric Motors – SKF Capabilities

October 2014

The Electric Motor - SKF solutions

SKF

The electric motor - SKF solutions throughout its lifecycle

Specification

SKF Life Cycle Management

Working with designers to find the right solution, from the start

Specification

SKF can help design engineers get off to a great start by tapping into decades of application knowledge from manufacturers and end users.

Electric motor specifications

Industry specifications

Professional Organizations, such as

- IEC (e.g. defines efficiency classes)
- IEEE (e.g. specs in IP, efficiency)

Industry Associations such as

- Manufacturers:
 - NEMA (MG1)
- Trade:
 - API (specs in electrical insulation, Condition Monitoring)

Legislation

Safety, efficiency (MEPS) such as

- USA (EISA)
- EU (DIRECTIVE 2009/125/EC)
- CHINA (GB18613)

Fishbone – Potential root causes for bearing failures

Root Cause Failure Analysis – First Steps

ISO classification of bearing damage and failure modes

- Weterial fatigue

insidage!

Ineffective sealing.

Causes of operational damage:

The ISO 15213 standard is based primarily an features that are visible on the rolling elements, raceways and other functional surfaces

Causes of pre-aperational damage: - incorrect shaft and hexaing fits - Defective bearing easts on stafes

- and in housings. Static misalignment Raulty mounting practices.
- Recape al electric surrent drough the bearing (econolexystrape) · Transportation, hundling and storage

Fatigue

Clairess of the surface. Failure of the tolling-contact metal surface asperities due to inadequate lubrication

Wear

Abrasine wear The result of inadequate lubrication or the ingress of contaminants

Adhedvewar Magerial transfer from one rear face to another as a result of Historial head

Molecure corresion Oxidation of the eurfaces in the presence of month

Evening compilers The axistation and wear of surface aspentiles under oscillating micromovement between mating surfaces

False brindling Shalow depressions in convergituding element central sauned by systic

obvidence on a new relative

beering for next selection on intering damage, refer to the Dagner Tearing Lange and their second an its SHI bearing manipulation functions.

Dectrical erosion

Indextation from debris Clents as a result of particles that are even rolled in the receives/folling element contact areas

indentation from handling Bearing surfaces that are denied or pruped by hard. sharp objects

Fatigue thacture

the material

Fracture and cracking Parcel Pacture

"No power to provided to a contrary of

Relationships of characteristics and causes of damage on bearings

Possible				0	perati	ng		Environmen			cal		Lubrication				Mounting				Other								
Failure modes with characteristics			Over lead	Overspe ed	Excessive freq. of loads/speed changes	V Brations	Shift/housing deflection	Temperature too high/low	Dux and dift ingress	Water ingress	Bectrical leakage	We may viscosity	(Consistency) additives allection	Lack of lubricant	Boess of ubritant	Impurkies	In correct handing (sheck isa ds)	Mounting procedures	Fit too tight	Pit too kow	Titing/misslignment	horred setting	hoomed locating (damping)	Storage	Transportation (vibration/Mrock)	Bearing selection	Equipment design	Manufacturing concerns	Material amonts
Estimue		Raking, spalling, peeling	×				×	×	Γ			×	×	×			×	×	×		×	×			×	×	×	×	×
, angun		Burnishing, micro cracks		×	×	×		×	×	×	×	×	×	×	×	×		×				×		×		×	×		×
		Excessive wear		×	×	×	×	×	×	×	×	×	×	×		×			×	×	×	×	×		Γ	×			×
	Abrasive	Scratches, scores		×	×		Π	Г	×		Π		×			×	×	×					Π		×				
VILL	Adhesive	Seizing marks, smearing	×		×		×	×				×	×	×	×			×	×	×	×					×	×	×	×
		Hot runners	×	×	×		×	×				×	×	×	×			×	×		×	×	×	L		×	×	×	×
		Molsture corresion							Γ	×			×			×		×						×	×		×		
Corresion		Fretting corresion	×		×	×	×		Γ											×	×	×	×			×	×	×	
		Faise brineling			×	×							×							×				×	×	×			
Electrical		Craters, fluting									×																×		
		Depressions	×				×	×	Г			Г			×		×	×	×		×	×	×	×	×	×	×		×
Plastic deformation Debris Indentation Nicks, gouge:		Debris Indentation					Π		×							×	×	×									×	×	
																×	×										×		
Practure and cracking		Forced fracture	×	×			Π	×	Г		Π	Γ					×	×	×		×	×	×		Γ	×	×	×	×
		Fatigue fracture	×	×	×	×	×													×	×	×	×			×	×	×	×
		Thermal cracking	×	×	×			×				×		×	×			×	×			×					×		×

@ SIC is a registered statemark of the SIC Group.

PA 12527 EN - April 2012

6.56 Secure 2013 Decamposa de la palícitada ay de anterida of de palícher aní rea nos le reconjunel (e en etcaca) oriente estas restas particular la palícitada a de la palícitada de la palícitada de la palícitada de la palícitada de estas relativas de la palícitada de estas series de estas de la palícitada constante de la palícitada de la palícitada de la palícitada de la palícitada estas series de estas de la palícitada constante derente.

This poster is provided as a courtesy of:

- Bearing system
- Bearing types

Lubrication failure

- Lubrication type (oil or grease)
- Grease selection
- Lubrication systems

Contamination

- Sealing system selection
 (design & material)
- <u>Capped bearings</u>
- Lubrication systems

Unexpected failure (mechanical and electrical)

<u>Condition Monitoring</u>

Design and develop

SKF Life Cycle Management

Solving application challenges with a systems approach to designs

Design and develop

By looking at your design from an all-around, systems perspective, SKF can help you develop integrated solutions that:

- Extend operating life
- Reduce maintenance needs
- Improve energy efficiency
- Reduce Total Cost of Ownership
- And more ...

Design and develop – SKF solutions

Sealing Systems

- Bearing integral seals
- <u>Shaft seals</u>
- <u>ICOS</u>
- <u>Speedi-Sleeve</u>

Lubrication Systems

- <u>Capped bearings</u>
- <u>Greases</u>
- Manual & automatic lubrication systems

Condition Monitoring Systems

Preparation

Services (Design tools)

- Handbook
- <u>Catalogues</u>
- Online calculation tools
- Drawings
- Engineering Consultancy
 Services

Design and develop Bearing systems

SKF bearing performance classes

SKF Energy Efficient (E2)

For use in light to medium loaded applications

Available bearing types:

- Deep groove ball bearings
- Cylindrical roller bearings
- Angular contact ball bearings
- Spherical roller bearings ..

Benefits¹⁾:

- Friction reduction
- Longer service life
- Less heat generated (=> lower running temperature)
- Smoother running (=> less noise)

1) Compared to SKF Explorer bearings of same type and size, bearing type specific speed and load requirements apply

SKF Explorer

For use in applications not suitable for E2 bearings

Available bearing types:

- Deep groove ball bearings,
- Cylindrical roller bearings,
- Angular contact ball bearings,
- Spherical roller bearings,
- CARB toroidal roller bearings....

Benefits²):

- higher dynamic load carrying capacity
- reduced noise and vibration levels
- less frictional heat
- significantly longer bearing service life

2) compared to standard bearings

SKF bearing offers for electric motors - types

SKF bearing offers for electric motors - specials

Bearing types I

Offer	Usage	Features	Benefits
Deep groove ball bearings	Most typically found in both locating and non-locating positions of small to medium sized electric motors and in the locating position of medium to large motors & generators.	 Large assortment of greased- for-life bearings. Variety of greases including SKF standard grease for ultra quiet running Low friction and reduced sensitivity to misalignment. Highly efficient sealing options 	 Runs cooler Increased uptime and productivity Reduced noise and vibration levels Longer bearing service life Longer lubricant life Excellent high speed performance Lower maintenance and operating costs
Cylindrical roller bearings	Typically used in belt or gear driven medium to large sized electric motors where heavy radial loads prevail. Usually used in the non-locating drive side position, in combination with a deep groove ball bearing in the locating position.	 Large number of configurations Separable design; the double flanged ring with the roller and cage assembly can be separated from the other ring which simplifies mounting and enables tight shaft and housing fits. 	 High radial load carrying capability High-speed capability

Bearing types II

Offer	Usage	Features	Benefits
CARB - toroidal roller bearings	CARB toroidal roller bearings are used as non locating bearings in belt and geared motors to accommodate heavy radial loads. It can be mounted in standard housings as well as special housings designed for large motors and generators.	 Unique design accommodates axial elongation of the shaft internally like a cylindrical roller bearing and misalignment like a spherical roller bearing Self-guiding rollers that will always adopt the position where the load is evenly distributed over the roller length Ability to accommodate heavy radial loads irrespective of whether the inner ring is axially displaced and/or misaligned relative to the outer ring 	 Accommodates heavy radial loads Accommodates shaft elongation within the bearing Allows misalignment Adapts to angular misalignment and axial displacement simultaneously Allows compact design with low friction
Spherical roller bearings	Spherical roller bearings are commonly used in large, oil lubricated electric motors and generators. Spherical roller bearings are also found in large motors and generators that use plummer block housings.	 Self-guiding rollers that enable the bearings to generate less heat Available with either a cylindrical or tapered bore Special design for vibratory applications also available. Standard assortment of sealed spherical roller bearings that can significantly simplify the sealing arrangement. 	 Self-aligning and consequently insensitive to misalignment. Can be mounted in standard housings as well as special housings designed for large motors and generators

Offer	Usage	Features	Benefits
Angular contact ball bearings	Angular contact ball bearings are used primarily as locating bearings in vertical electric motors when heavy axial loads cannot be accommodated by deep groove ball bearings.	 Available in either a single or double row design SKF manufactures as standard universally matchable bearings, which provide a very controlled clearance or preload when the bearings are mounted back-to-back or face- to-face for most popular sizes 	 Ability to accommodate heavy axial loads Ability to accommodate high speeds
Spherical roller thrust bearings	Spherical roller thrust bearings are used as locating bearings in large vertical electric motors when heavy axial loads cannot be accommodated by angular contact ball bearings. Spherical roller thrust bearings can also be used as a replacement for hydrostatic or hydrodynamic bearings.	 Highest carrying capacity of all thrust roller bearings Heavy thrust and radial load carrying capability Self aligning bearing Separable bearing Grease lubrication possible in moderate speed applications 	 Ability to accommodate heavy axial and radial loads Self-aligning, therefore insensitive to misalignment Simplified mounting Cost efficient (internal oil pumping action compared to hydrostatic bearings that require an oil pressure system)

© SKF Group

INSOCOAT[®] bearings

These bearings have been specifically developed to protect against electric current passage. The electrically insulated rolling bearings are an economical solution compared with other insulation methods to protect the bearing. Integrating the electrical insulation function into the bearing the machine's reliability and uptime can be increased by virtually eliminating electric erosion problems.

Features and benefits

- Withstand voltages up to 1 kV DC (2 kV and 3 kV available upon request)
- Defined minimum electrical resistance of 50 MΩ (>>150 MΩ on request)
- · Insensitive to moisture and humidity.
- Robust and can be handled in the same way as normal non-insulated bearings.
- Reduces maintenance costs.
- Global availability in more than 130 countries and at 7 000 distribution locations worldwide.

INSOCOAT® bearings – recommended range

	Coating on the outer ri	ng
NU 315 ECP/VL0241	• 6215/C3VL0241	• 6314/C3VL0241
NU 317 ECM/C3VL0241	• 6216/C3VL0241	• 6315/C3VL0241
NU 319 ECM/C3VL0241	• 6217/C3VL0241	• 6316/C3VL0241
NU 322 ECM/C3VL0241	• 6218/C3VL0241	• 6317/C3VL0241
NU 324 ECM/C3VL0241	• 6219/C3VL0241	• 6318/C3VL0241
	• 6220/C3VL0241	• 6319/C3VL0241
	• 6222/C3VL0241	• 6320/C3VL0241
	• 6224/C3VL0241	• 6322/C3VL0241
	Coating	on the inner ring
	• 6226/C3VL2071	• 6324/C3VL2071
	• 6230/C3VL2071	• 6326/C3VL2071
		 6328/C3VL2071
		• 6330/C3VL2071

.

•

•

.

•

Electrical behaviour of INSOCOAT® bearings

	DC	AC			
Electric variable	Resistance R	Impedance Z			
Behaviour	Ohmic resistance	Resistance parallel to capacitance			
Unit	Ohm [Ω]	Ohm [Ω], Farad [F]			
Freqency range	0	1 Hz - 1 kHz High frequency: 1 kHz up to MHz			
DC- Resistance	More than 50 $M\Omega$				
Impedance		Dependent on frequency (see figure 1)			
Capacitance		Constant over frequency (see figure 2) The absolute value is dependent on the size of the bearing			

Figure 2: Capacitance of an INSOCOAT - bearing

VL2071

INSOCOAT®

VL024x

Hybrid

Bearing specials – insulated bearings – Hybrids

Hybrid bearings

In applications with modern drives, INSOCOAT[®] bearings may not always be sufficient. In these cases, Hybrid bearings offer a more effective solution, eliminating electrical erosion issues on motors.

Features and benefits

- Rolling elements in non-conductive materials
- Preventing all current types from circulating
- Ability to run at higher speeds
- Improve service life of the application
- Improve grease life
- Resist wear caused by solid particle contamination
- Resist vibration

Hybrid bearings - performance

120 °C and $n \times d_m = 670\ 000$

Grease life performance – test result where the grease life in SKF hybrid bearings is four times longer than in the corresponding all-steel bearings

Wear performance under contaminated lubricant conditions

Comparison of material properties

Properties	Bear stee	ring Bo I si	earing grade licon nitride
Compressive strength [M	e -23 Pa]	00 3	000
Tensile strer [MPa]	ngth -19	00 80	00
Elastic mode [GPa]	ulus 210	3:	10
Hardness H [kg/mm ²]	V10 700	1	600
Electr. resist [Ωm]	tivity 0,4 > (con	< 10 ⁻⁶ 1(ductor) (ir) ¹² Isulator)
Density [g/ci	m ³] 7,9	3,	2
Coefficient of thermal elongation [11,7 10 ⁻⁶ /K]	3	

Bearing specials – SKF Sensor bearing units

Offer description

SKF Sensor Bearing Units are mechatronic machine components that combine sensor and bearing technology.

They are designed to perform as:

- Incremental encoder
 - or
- Angular position monitor

for motor and/or machine control.

These units use a sensor that is shielded from external influences. The sensor body, impulse ring and bearing are mechanically attached to each other, forming an integrated ready-to-mount unit. They are intended for applications with a rotating inner ring and stationary outer ring.

Bearing specials – SKF Sensor bearing units

Features

- Integrates bearing function with sensor electronics in compact design (only 6 mm of extra space in axial direction)
- Enables speed and direction control
- Temperature range: 40 to +120 °C
- Resolution from 32 to 80 pulses per revolution
- Accurately detects speeds from zero to 14,000 r/min (depending on bearing size)
- Wide range of cable length and connectors available

Benefits

- Compact: Allows compact axial design (no extra space is needed outside the motor)
- Reliable: unit protected within the motor, airgap tightly controlled within the most precise motor component, MTBF* of electronics is longer than the bearing lifetime
- Robust: designed for environments with thermal shocks and vibrations
- Cost efficient: simplifies motor assembly as one less component to mount
- Customized to your requests: cable length, connector and interfaces

^{*} MTBF : Mean Time Between Failures

Bearing specials – SKF Sensor bearing units

SKF Rotor Positioning Sensor Bearing Unit (absolute)

Bearing unit integrating SKF Explorer deep groove ball bearing, encoder components, cable and connector

Output: 2 analog sine and cosine voltage output signals for brushless permanent magnet motor control.

The highly reliable sensor, which monitors angular position starting from 0 to 12 000 r/min, sends an analogue signal to the electronic control unit. This is particularly important for controlling torque and energy use during start-up and operation.

Features

- Typical angle accuracy < ±1
- Angle repeatability < 0,1°
- Temperature range: –40 to +125 °C
- Withstand electromagnetic interferences and electric motor magnetic field
- Angular position from 0 r/min (true power-on signal)
- High speed ability (bearing size dependent): up to 12 000 rpm on shielded bearing 6206

Benefits

- Improved electric motor efficiency
- Fewer electronic interfaces
- Supports stable torque level
- Reduced complexity Bearing, target wheel and sensor delivered in one unit
- Highly reliable
- Compact
- Easy to install
- Signal accuracy not affected by motor mechanical tolerances

Bearing specials – Traction motor bearing unit

Traction motor bearing unit

The traction motor bearing unit (TMBU) design offers a maintenance-free solution for an extended service interval. This solution is based on a very compact and space-saving design. The total motor length can be reduced or a given motor envelope iron length of rotor and stator can be increased to achieve a higher power rating. This subsystem design principle incorporates several features into one unit like grease, sealing and locating functions. The integrated flange design enables very easy mounting.

Features

- Customized and space saving design for less space, lower mass, fewer parts
- Robust execution
- Sealed and greased for life (standard),
- Regreasing feature possible (increases service life up to 18 years or 3 Mio km depending on application)
- Superior performance under poor lubrication (ceramics)
- Flanged unit concept on IR and OR
- Insulating feature implemented (INSOCOAT[®] or Ceramic)

Mechatronic feature options:

- Integrated incremental speed sensor (IIS) for shaft speed and direction of rotation
- High accuracy & resolution absolute position sensor (HAPS) for motor control
- Additional features (option): operating temperature
- Non-contact sensing principle for long operational life
- Easy sensor replacement without dismounting the unit.

Bearing specials – Traction motor bearing unit

Benefits

Reduced maintenance and lifecycle costs due to:

- Easy mounting due to flange execution
- Increased reliability
- Improved machine uptime
- Compact motor design
- Higher robustness with ceramic elements
 - Reduced risk of smearing
 - Less sensitive to contamination (liquid and solid)
 - Prevents all current types from circulating
- Higher power output with ceramic elements
 - Low friction
 - Ability to run at higher speeds
 - Longer service life with grease lubrication
 - Lower and more stable friction under changing operating conditions

Offer description

To counteract the high cost of a sleeve bearing system, SKF developed a shaft system that consists of two flanged housings (SKF AFC housings), each equipped with a roller bearing.

Features

- Preferably equipped with a spherical roller bearing as the locating bearing and a CARB bearing as the non-locating bearing to prevent axial overload due to heat elongation of the shaft during operation. The non-locating bearing side can also be equipped with a spherical roller bearing instead of the CARB bearing.
- Specially designed labyrinth seals to keep the lubricant in and contaminants out
- IEC frame size (shaft height): 630 mm to 1250 mm
- Shaft diameter (under bearing seat): 180 mm to 380 mm (420 mm)

Benefits ¹⁾

- Reduced friction losses
- Less heat generated, cooler running
- Improves motor efficiency
- Copes with reverse directions
- Copes with low speeds (high inertia run down)
- Accommodates shaft deflections
- Does not need expensive oil circulation systems, which eliminates the need for pumps, pipes, oil sumps and coolers => increases system efficiency
- No need for extra components like thrust bearings or hydrostatic jacking devices
- Compact design compared to the most popular sleeve bearing design used in the marketplace
- Compared to a sleeve bearing unit, the SKF shaft system is a cost-effective solution that is simpler, has fewer components, and is easier to maintain.

A flanged housing unit with a CARB bearing

SRB-CARB System – Benefits ¹⁾

Secured, frictionless axial expansion at non-locating bearing irrespective of

- friction between bearing ring and housing (or shaft)
- corrosion
- fretting or wear
- distortion of housing
- flexibility of support structure
- machining accuracy of support structure

Benefits

- Lower axial load on both bearings
- Perfect load distribution over three roller rows
- Lower operating temperature, longer relubrication interval
- Reduced vibration levels
- Less risk from low loads
- Longer bearing life
- Optimized solution
- Smaller bearings can give same service life
- Downsizing cost reductions

1) Compared to hydrodynamic (sleeve) bearings

Bearing specials – SKF Active magnetic bearings

SKF Active magnetic bearing (AMB)

An SKF AMB is a mechatronic system that consists of mechanical components, electro magnets, sensors and a digital control system. AMBs are mainly used for high variable speed (HVS) electric motors to drive centrifugal compressors in the oil and gas industry, refrigeration, air compression and high-speed electric generators in the energy sector.

Features

- No physical contact between rotating and stationary parts
- No need for lubrication
- High load capability (up to 350 kN)
- Shaft diameter up to 600 mm
- Immune to electromagnetic interferences and electric motor magnetic field
- Very high speed capability (ndm = 3.5 Mio)
- Built in condition monitoring for remote diagnostics
- Virtually vibration free

Benefits

- Very high reliability no contact and no wear
- Robust in harsh applications and process environments:
 - Shaft unbalance, compressor surge loads, dynamic loads
 - Reverse rotation
 - Frequent start-stop
 - Wide temperature range
- Reduced environmental impact:
 - Clean technology, non contaminating, no particle generation
 - System energy losses lower than those of rolling or sleeve bearing systems

Design and develop Sealing systems

SKF Sealing offers for electric motors

SKF Bearing Integral Seals for electric motors

				Í			
Selection guidelines for SKF sealing solutions							
Shields	Non-contact seals	Low-friction seals	Contact seals				
Z	RZ	RSL	RSH	RS1			
+++	+++	++	0	0			
+++	+++	+++	0	0			
0	+	+++	+++	++			
0	+	++	+++	+++			
-	-	0	+++ +	++ +			
	For SKF sealing so Shields Z +++ +++ 0 0 0	For SKF sealing solutions Shields Non-contact seals Z RZ ++++ ++++ 0 + 0 +	Image: Second	For SKF sealing solutions Shields Non-contact seals Low-friction contact seals Contact contact seals Z RZ RSL RSH ++++ ++++ +++ 0 0 + ++++ +++ 0 + +++ +++ - - 0 +++ - - 0 +++			

Symbols: +++ = best ++ = very good + = good O = fair - = not recommended

SKF shaft seals for electric motors

Seal designs and their relative performance					
	V-ring seal	MVR seal	Radial shaft seal		
Туре	axial	axial	radial		
Application					
Grease	Yes	Yes	Yes		
Oil	Mist	Mist	Yes		
Horizontal	Yes	Yes	Yes		
Vertical	Yes	Yes	Yes		
Porformanco					
Low friction	++	++	+		
Speed	++	++	+		
Endurance/life	++	++	+		
Lubricant retention	++	++	++ (+++) ¹⁾		
Dust exclusion	++	++	+++		
Water exclusion					
Static Dynamic	+	+	$^{++}$		
High pressure	-	0	+		

Symbols: +++ = best ++ = very good + = good o = fair - = not recommended

1) For SKF Wave sealing lip configuration.

SKF seals materials

						Table 3
Seals materials performance overview						
	Silicone rubber	Nitrile rubber	SKF Duralip	SKF Duratemp	SKF Duralife	Polytretrafluoro- ethylene
Designation according • ISO • ASTM • SKF	MVQ VMQ S	NBR NBR R	XNBR XNBR D	HNBR HNBR H	FPM FKM V	PTFE PTFE T
Temperature [°C] • low • high	-70 +160	-40 +100	-40 +100	-40 +150	-40 +200	-80 +250
Wear resistance	-	0	+	+	++	+++
Symbols: +++ = best ++	ols: +++ = best ++ = very good + = good o = fair - = not recommended		WARNANCI Safety precasitions for flacon nables and polyteiral Ancountifications. Russon nables (TRA) and polyteiral flacon stables and polyteiral and p			
				dispesal. SNF takes no responsibility FRM or PTFE, or for any injury result	for the improper handling of ting from their use.	

SKF Integrated compact oil seal (ICOS)

SKF's compact oil seal unit (ICOS) integrates a unique spring loaded radial shaft seal into a bearing. ICOS can be used in either grease or oil lubricated applications without additional seals and requires less space than the typical twocomponent arrangement, that can be found in gear motors. The ICOS unit simplifies mounting and avoids expensive machining of the shaft because the bearing's inner ring shoulder serves as an optimal seal counterface.

SKF SPEEDI-SLEEVE

SKF SPEEDI-SLEEVE is a well-proven solution used to provide an excellent sealing surface for radial shaft seals, while reducing the need for costly shaft machining or maintenance. Its surface properties result in a better seal counterface than can often be achieved on a shaft. SKF SPEEDI-SLEEVE can be fitted virtually anywhere there is a radial shaft seal.

The new generation of SKF SPEEDI-SLEEVE further enhances the sealing system's performance by reducing the wear on both the sleeve and sealing lip.

Features

- Proprietary stainless steel material and manufacturing processes for increased strength and excellent ductile properties of the sleeve.
- Imperceptible lubricant pockets enable the lubricant to reside on the sleeve and thereby prevent dry running of the sealing lip.
- Wear resistant seal contact surface manufactured to minimize directionality ($0^{\circ} \pm 0.05$) with a finish of Ra 0,25 to 0,5 µm (10 to 20 µin.).
- Removable flange for simplified installation.
- Thinwalled design [0,28 mm (0.011in.)] allows the original size to be used for the replacement seal.

Benefits

- SKF SPEEDI-SLEEVE offers enhanced sealing system performance and benefits for both OEM and aftermarket customers, helping to achieve the following:
- Higher productivity
- Reduced warranty claims
- Increased mean time between failures
- Reduced maintenance and repair costs

Reduced environmental impact

Design and develop Lubrication (-systems preparation)

Special Iubrication

If rolling bearings are to operate reliably and realize their full service life they must be adequately lubricated. The function of the lubricant is to form a protective oil film that separates the rolling contact surfaces and prevent metal-to-metal contact.

The lubricant also protects the bearing and related components against corrosion. When grease is used as a lubricant, it can also help protect the bearing against contaminants such as dirt, dust and water.

Customer challenges

- Extend bearing life without increasing pricing
- More robust designs
- Universal components for lower logistic costs
- Sustainable solutions
- Complying with laws and regulations
- Service life and warranty period

End user challenges

- Increased motor availability
- Lower maintenance and repair costs
- Clean motor
- Sustainable solutions

Lubrication solutions for electric motors

Integrated SKF lubrication solutions combine our expertise in bearings, seals and condition monitoring with our tribology knowledge.

LGHP 2

SKF high performance, high temperature bearing grease

• Electric motors: small, medium and large

LGMT 2

SKF general purpose industrial and automotive bearing grease

Small electric motors

LGHP 2 is premium quality mineral oil based grease, using a modern Polyurea (di-urea) thickener. It is suitable for ball (and roller) bearings required to run extremely quiet, operating at a wide temperature range from -40 °C (-40 °F) up to 150 °C (302 °F), at medium to high speeds.

LGMT 2 is mineral oil based lithium soap thickened grease with excellent thermal stability within its operating temperature range. This premium quality, general purpose grease is suitable for a wide range of industrial and automotive applications.

LGMT 3

SKF general purpose industrial and automotive bearing grease • Large electric motors LGMT 3 is mineral oil based lithium soap thickened grease. This premium quality, general purpose grease is suitable for a wide range of industrial and automotive applications.

Grease fittings

Grease fittings are the lubricant's entryway for motor applications that require relubrication of the bearing system. The grease fittings can be used with manual and automated relubrication setups.

The smallest lubrication system

Capped and greased for life deep groove ball bearings

Selection guidelines for SKF sealing solutions

Requirement	Shields	Non-contact seals	Low-friction seals	Contact seals	
	Z	RZ	RSL	RSH	RS1
Low friction				_	_
Low friction	+++	+++	++	0	0
High speed	+++	+++	+++	0	0
Grease retention	0	+	+++	+++	++
Dust exclusion	0	+	++	+++	+++
Water exclusion					
static	-	-	0	+++	++
dynamic	-	-	0	+	+
high pressuree	-	-	0	+++	0

Symbols: +++ = best ++ = very good + = good o = fair - = not recommended

Design and develop Condition monitoring systems – preparation

Condition monitoring preparation

Positioning and specification for condition monitoring sensors (temperature, vibration)

Design and develop Services

Catalogues and handbooks - general

Handbooks and brochures - industry specific

SKF engineering tools

SKF's range of engineering tools comprises interactive advisory systems relating to a range of topics associated with rotating machinery. These tools will allow you to solve problems by utilizing some of the knowledge that SKF has developed and accumulated in more than 100 years of working with a broad range of industries.

SKF's engineering tools are available in the Knowledge Centre Section @ skf.com and many of them as SKF Mobile Apps for use with your smartphone.

SKF Engineering Consultancy Service

SKF Engineering Consultancy Service

SKF Engineering Consultancy Service has experienced engineers and project leaders that can support you with everything from material science, lubrication and tribology knowledge to verify your new designs using SKF's unique simulation programs. Working closely together with SKF's experts and state-of-the-art laboratories and research centers all over the world and applying proven processes as Design for Six Sigma enables you to develop robust solutions faster. We can combine the right SKF knowledge, experience and equipment into a tailor-made solution specific to your needs, and support you during the entire life cycle of your products.

Capabilities

- Analytical modeling of complete bearing systems, consisting of shaft, housing, gears, couplings, etc.
- Static analysis to determine the elastic deformations and stresses in components of mechanical systems
- Dynamic analysis to determine the vibration behavior of systems under working conditions ("virtual testing")
- Visual and animated presentation of structural and component deflection
- Optimizing system robustness, leading to e.g. reduced temperatures, noise and vibration levels, and energy consumption
- · Optimizing system costs

Benefits

- Faster development processes and reduced time to market
- Reduced implementation costs by virtual testing before production starts
- Improved bearing arrangement by reducing noise
 and vibration levels
- Extended service life by improving the lubrication or sealing system.

Manufacture and test

SKF Life Cycle Management

Delivering world-class solutions and validation services globally.

SKF offers for electric motors

SKF mounting and dismounting tools

Mounting and dismounting tools

Mounting issues represent a relevant amount of total failures in bearing industrial applications. SKF tools allow for easier and safer bearing mounting procedures.

Features

- Different methods and solutions are available according to application restrictions, bearing dimensions and tolerances
- SKF tools are designed to be safe for users
- Tolerances and methods proposed derived by knowledge and SKF experience
- Advanced and customized solutions

Benefits

- Increased safety during assembly and disassembly
- · Correct bearing mounting and dismounting
- Avoid bearing damages, such as brinelling, and premature failures (motor warranty)

SKF lubrication offers – manufacturing

High-volume automated stationary test systems

Lower-volume stationary and portable test systems

Motor QA – automated testing systems

Automated motor testing: Baker WinAST and Baker WinTATS

Quality assurance and production control with manufacturing line test systems in medium to highvolume production environments. These systems reduce repair and service costs by finding quality issues before they can reach the customer.

Features

- Fully automated, semi-custom Windows 7 based system performs an array of standard tests on each winding, including:
- Hipot (AC and/or DC), with micro-arc detection
- Winding resistance
- Surge
- Corona
- Inductance
- Rotation direction
- Field map and auxiliary relay matrix
- All test parameters and pass/fail limits are preprogrammed in master file

Benefits

- Reduced testing cycle time
- Improved manufacturing output
- Rugged reliability for continuous use in manufacturing environments
- Cost efficient
- Custom configurations
- Industry-leading support

Portable motor test equipment

For low- to medium-volume production lines with a lot of variation, portable Baker AWA-IV and Baker DX static motor analyzers are the best choice. These static motor analyzers excel at tests for weak insulation and motor circuit issues in post production.

Features

- Static motor analyzers measure the integrity of the motor's insulation system and motor circuits with
- Surge tests
- Polarization index tests
- DC step-voltage tests
- Megohm [MΩ] and Winding resistance tests
- DC coil and armature tests

Benefits

- Rock-solid test reliability
- Portability
- Automated (Baker AWA-IV) and manual testing (Baker DX)
- Full spectrum of insulation and circuit tests
- Cost efficient
- Rugged, field-proven designs

For example, vibration levels with SKF condition monitoring equipment

SKF

Install and commission

4

SKF Life Cycle Management

Install and commission

Providing expert on-site services, training, tools and auditable procedures.

Installation

Installation is a key milestone in the machinery life cycle.

Improper installation can:

- Reduce motor service life
- Affect product quality
- Drive up maintenance costs
- Cause unjustified warranty claims
- Reduce reliability
- Decrease uptime
- Increase TCO

Install and commission – examples of SKF offers

SKF

Install – SKF shaft alignment tools

Install and commission

Shaft alignment tool

The shaft alignment tool is designed to assist users with managing alignment processes for any rotating machines. It consists of:

- a portable display unit,
- a pair of laser measuring units and
- mechanical parts to mount the measurement units on the shaft.

Features

- For horizontal and vertical alignment as well as soft foot check
- Pre-defined alignment process integrated into the portable instrument with step-by-step instructions
- Built-in wireless interface between the portable display unit and the measurement units. No cables needed.
- Energy efficiency indicator estimates extra energy consumption due to misalignment.

Benefits

- Accurate measurement: consistency of the process
- Guided process: reduced maintenance time
- Reduced energy consumption
- Increased driveline service life
- Reduced unplanned downtime
- Reduced maintenance costs

SKF Belt Tension System

The SKF Belt Tension System enables controlled moving of the motor axis by hydraulic cylinders. With a hand-held hydraulic pump, the cylinders of the SKF Belt Tension System are moved upwards or downwards. Increasing or releasing the hydraulic pressure moves the motor and increases or releases the belt tension which is directly related to the pressure in the cylinders.

Features

- For IEC motor frame sizes 160 to 400 and several NEMA frame sizes
- Single acting hydraulic cylinders
- Mechanical locking with a hammer
- Hydraulic hand-pump (e.g. SKF THPT 1) available through SKF Maintenance Products

Benefits

- Assured repeatable maintenance quality
- Quick and reliable tension checks
- Easy preventive maintenance
- Safe, simple and fast belt replacement
- Reduced costs, due to prolonged belt life
- Higher uptime of the whole system due to less time consuming breakdowns
- Less vibrations and therefore higher efficiency due to correct belt tension
- Easy maintenance procedures minimize risk of injuries

Lubrication systems

Installing the motor in hard to reach, dangerous and/or restricted access spaces?

Help your maintenance department reduce costs by considering SKF lubrication systems!

With its complete range of products, SKF is the world's leading manufacturer and systems supplier in the field of centralized lubrication for machinery, industrial plants, vehicles and off-road equipment.

Automatic grease and oil systems ensure an adequate supply of lubricant to bearings in large and production critical motors and generators.

Grease lubrication

Oil lubrication

Oil systems

Automatic vs. manual lubrication

Install – SKF lubrication systems for electric motors

More information on lubrication systems in the "**Maintain**" chapter

Operate and monitor

SKF Life Cycle Management

Deploy the right solutions at the right time to improve productivity.

General benefits

- Plan maintenance when convenient (no fire fighting)
- Plan maintenance when it is really needed (no personal opinions, no time-based maintenance)
- Increase uptime
- Increase reliability
- Reduce maintenance costs
- Avoid catastrophic failures

With the right machine data and the right tools to interpret it, you can optimize your maintenance program.

SKF has a complete, integrated range of condition monitoring tools and technologies to make it happen.

Operate and monitor – What would you like to be informed about?

Motor monitoring (and analyzing) solutions – electrical

Static and dynamic electric motor condition monitoring drives successful predictive maintenance and quality assurance programs

Portable motor analysis equipment

SKF Dynamic Motor Analyzer – EXP4000 monitors for health and performance issues with a motor/machine system's power supply, load, and the motor itself

SKF Baker AWA-IV and Baker DX static motor analyzers test and analyze the condition of a motor's insulation system and motor circuits

Together they provide a full spectrum of test and monitoring capabilities that generate information maintenance professionals need to accurately diagnose and predict potential failures and make good maintenance decisions

- Minimizes costs from unplanned downtime due to motor failure
- · Accurate analysis for maintenance decision support
- Portability

System architecture – dynamic analyzer

SKF EXP4000 dynamic motor analyzer capabilities

SKF EXP4000 dynamic motor analyzers monitor for problems across an operating machine system (with power quality, motor condition and load)

Example: TORQUE and LOAD condition data revealed cavitation resulting from broken impeller/end bell on submerged pump

Torque signature from EXP4000 under normal conditions

Cavitation identified by torque signature on EXP4000

Monitor – SKF Baker static motor analyzers

Features

Baker AWA-IV and Baker DX static motor analyzers assess insulation and motor circuit conditions with:

- Surge tests
- · Polarization index (PI) tests
- DC step-voltage tests
- Megohm [MΩ] tests
- Winding resistance tests

These analyzers are used for predictive maintenance and troubleshooting

A surge test is the only means of identifying weak motor winding (turn-to-turn) insulation that will cause premature or otherwise unexpected motor failure

The pulse-to-pulse error-area ratio (EAR) algorithm helps accurately identify insulation problems that can lead to motor failure and costly unplanned downtime

Turn-to-Turn Short

Problems identified by SKF static and dynamic analyzers

Eccentricity (dynamic, static)

Supply	Loading issues
Power quality	Over/under loading
Poor-performing transformers	Process
Short, medium, long range trip settings	
Connection issues (junction box in motor)	IVIECNANICAI
Lead-line insulation deterioration	Bearing faults
	Misalignment
Ground wall insulation	Fan unbalances
Weakness	Belt frequencies
• Dirt	Worn Impellers
Moisture	Gear mesh frequencies
• Dry rot, brittle	VED
Cracks	VID
Minding inculation and mater aircuit	Power quality
winding insulation and motor circuit	Shorted IGBT's
• Turn-to-turn, phase-to-phase, coil-coil insulation weaknesses	Feedback loop
Shorts, opens	Process information
Reversed coils	Tuning /setup
Phase unbalanced (turn count)	
Phase unbalanced (wire size)	Soft start
	Tuning /setup
Rotor	Troubleshooting
Cracked bars	
Poor welds	
Broken bars	
Eccentricity (dynamic, static)	

SKF Online Motor Analysis System – NetEP

NetEP is a stationary, fully-automated, network-connected, electric motor monitoring system. It acquires and analyzes machine system performance at regular intervals, minimizing the need to test each motor or generator with portable equipment at its location. This permanently-installed system operates with one voltage measurement per bus and current sensors installed for each motor.

Features

- Monitors more than 40 electrical parameters of electric motors and compares the results to limits, displaying alerts if limits have been exceeded
- Can be configured, monitored and operated 24/7 from any Internet network connection
- Collects data from up to seven different voltage busses with a maximum of 32 motors attached to a single NetEP unit
- Multiple NetEP systems connected to a single server can monitor hundreds of motors located anywhere in the world
- Acquires power quality every 10 seconds and time waveforms once per hour

Benefits

- Plan maintenance when convenient (no fire fighting)
- Plan maintenance when it is really needed (no personal opinions, no time-based maintenance)
- Increase uptime
- Increase reliability
- Reduce maintenance costs

General benefits

- Plan maintenance (reduces unplanned maintenance or downtime)
- Perform maintenance when it is actually necessary (no personal opinions, no time/route-based maintenance)
- Increase uptime
- Increase reliability
- Reduce maintenance costs
- Avoid catastrophic failures and costly unplanned downtime

Motor monitoring solutions – mechanical

SKF Microlog Analyzers

SKF Microlog is a series of portable data collectors and analyzers made to support your condition monitoring program. SKF Microlog can handle all of the tasks required to perform predictive maintenance on your critical drivelines.

SKF Microlog analyzers automatically collect both dynamic (vibration) and static (process) measurements from almost any source, including handheld accelerometers, magnetically mounted accelerometers, permanently mounted vibration sensors and on-line monitoring systems.

Features*

Depending upon model chosen, features can be:

- Class I Division 2 or ATEX Zone 2
- IP 65 rated
- Complemented by a wide range of application specific firmware modules to fit your needs

* Available features differ in the various Microlog models

Benefits

- Plan maintenance when convenient (no fire fighting)
- Plan maintenance when it is really needed (no personal opinions, no time-based maintenance)
- Increase uptime
- Increase reliability
- Reduce maintenance costs

Monitor – monitoring system architecture

Monitor – Microlog views

Monitor – The SKF Microlog family tree

Operate and

monitor

SKF IMx is a cost-effective solution for a variety of condition monitoring applications. It is a family of systems and a key component of an advanced:

CONDITION MONITORING SYSTEM

PROTECTION SYSTEM

It is a complete system for early fault detection and prevention, automatic advice for correcting existing or impending fault conditions to improve machine reliability availability and performance.

When part of a protection system relevant acquired data can be used used to drive the Distributed Control System (DCS).

Monitor – online monitoring system architecture

General benefits

- Plan maintenance when convenient (no fire fighting)
- Plan maintenance when it is really needed (no personal opinions, no time-based maintenance)
- Increase uptime
- Increase reliability
- Reduce maintenance costs
- Avoid catastrophic failures

Other monitoring solutions

Monitor – SKF Electric Discharge Detector Pen

SKF Electric Discharge Detector Pen

The SKF Electrical Discharge Detector Pen (EDD Pen) is a simple to use handheld instrument for detecting electrical discharges in electric motor bearings. Electrical discharges can cause electrical erosion, lubricant degradation and ultimately bearing failure. Electric motors are more vulnerable to suffer electrical erosion in bearings when controlled by a Variable Frequency Drive. When incorporated into a predictive maintenance program, the EDD Pen can help detect bearings more susceptible to failure, and significantly reduce the chance of unplanned machine downtime.

Features

- Unique remote solution allows operation at a distance from the motors.
- SKF technology
- Capable of detecting electrical discharges on a time base of 10 seconds, 30 seconds or continuously
- LED backlit screen allows use in dark environments
- IP 55 can be used in most industrial environments
- Supplied standard with batteries, spare antenna and language free instructions for use in a carrying case

Benefits

- User doesn't need to touch machinery in motion
- No special training required

When incorporated in predictive maintenance program:

- Can help detect bearings more susceptible to failure
- Prevent unplanned machine downtime
- Increase uptime and reliability
- Reduce maintenance costs

Monitor – SKF Machine Condition Indicator

SKF Machine Condition Indicator

The standalone SKF Machine Condition Indicator (MCI) gives plants a reliable, affordable way to monitor non-critical motors. A vibration sensor and an alarm indicator in one unit, the fully sealed, battery-powered MCI requires no wired or wireless connections, installing directly on motors for permanent, periodic vibration and temperature monitoring. Motor condition lights on top of the MCI become illuminated when the unit detects developing issues, alerting maintenance technicians that the motor needs to undergo a root cause analysis.

Features

- Velocity measurements support
 overall motor health
- Measure enveloped acceleration detects bearing degradation
- Temperature measurements indicate uncharacteristic heat
- Two modes of operation address most industrial machines
- Built-in intelligence to avoid false alarms

Benefits

- Monitor non-critical motors cost-effectively
- Extend maintenance route intervals
- Cut maintenance demands and costs
- Free up maintenance staff for higher level/other tasks
- Integrate MCI units into an operator driven reliability program/maintenance routes

Monitor – related offers for condition monitoring

Maintain and repair

6

SKF Life Cycle Management

Supporting motor maintenance and operations with a range of tools and services.

Maintain and repair

SKF support

When electric motors require maintenance or repair, SKF can support your operation with

- A broad assortment of lubrication and replacement products
- An array of specialized tools and testing equipment
- Mechanical maintenance and specialized services

Maintenance personnel sometimes neglect lubricating the bearings as they might have more critical issues to take care of.

The importance of lubrication

Lubrication issues

Lubrication related issues are amongst the most common causes of failure for bearings in electric motors.

For example:

- too much lubricant
- too little lubricant
- wrong type of lubricant
- contamination of the lubricant with water, air, particles, etc
- cross-contamination (i.e. mixing of incompatible lubricants)

*Numbers shown are for general machinery and not from a motor specific study. Lubrication related numbers for motors could even be higher!

Poor fitting

Poor lubrication

Contamination

Fatigue

Maintain and repair – SKF* Lubrication offers

* Includes these brands:

© SKF Group Slide 110 6 October 2014

A wide range of SKF greases

SKF has developed several greases suitable for motors in any operating condition. Selection criteria depends on operating temperature, load applied onto the bearing, speed and bearing dimensions.

Automatic vs. manual lubrication

Aaintair

and repair

Lubrication systems

With its complete range of products SKF is the world's leading manufacturer and systems supplier in the field of centralized lubrication for machinery, industrial plants, vehicles and off-road equipment.

Automatic single- or multi-line grease and oil systems ensure an adequate supply of lubricant to bearings in large and production critical motors and generators.

Maintain – SKF Lubrication systems

Maintain – SKF lubrication systems grease

SKF SYSTEM 24

SKF SYSTEM 24 is an automatic lubricator yielding a constant grease flow that can be adjusted by setting a dial for required lubricant flow rate. Typical applications include fans, blowers, conveyors and other hard-to-reach motors.

Features

- Automatic gas or electro mechanical driven single point lubricators
- Supplied ready to use straight from the box
- Filled with a wide range of high quality SKF lubricants
- Tool-free activation and time-setting allows easy and accurate adjustment of lubrication flow.
- IP 65 level allows the lubricator to be used in most dusty and wet environments

- Ease of use
- Robust
- Reliable
- Reduced usage of lubricant
- Avoidance of failures due to
 lack of lubricant (or excessive lubricant)
- Reduced risk for wrong lubricant (vs manual lubrication)
- Improved maintenance procedures
- Reduced maintenance costs
- Helps avoid lubricant mix-up

SKF automated and centralized lubrication systems

Automated and centralized lubrication systems for multiple lubrication points usually consist of a lubricant reservoir, a pump, controller/timer, lubricant supply lines, metering devices and the lubricant feed lines. Typical applications for these systems include large electric motors, pump and motor combinations or sets of these machines.

* Depending upon system chosen

For oil or grease lubrication

Low reservoir level

Alarm signals

Injector systems with adjustable output for

each lubrication point

Blocked line detection

(remote notification)

- Avoidance of failures due to lack of lubricant (or excessive lubricant)
- Reduced usage of lubricant
- Reduced risk for wrong lubricant (vs. manual) lubrication)
- Improved maintenance procedures
- Reduced maintenance costs
- Helps avoid lubricant mix-up

SKF Oil-Mist systems

Oil-Mist is a reliable, effective centralized lubrication system that continuously and efficiently atomizes oil into small particles and then conveys and delivers the correct amount of the pressurized lubricant to the motor bearings.

Features

- Interchangeable nozzles allowing changing flow rates in the field
- Loader fitting to simplify manual filling
- Stainless steel suction
 strainer
- Air filter elements for clean air at lube points
- Pressure relief valve
- Simple rugged design

- Increases service life of equipment by reducing component wear
- Contributes to an increase in production availability
- Significantly reduces bearing wear and temperature
- Lowers lubricant consumption, often by 80% or more
- Lubricates hard-toreach points
- No moving parts to wear out

Repair – predictive motor maintenance test equipment 🐗

Portable motor analysis equipment

SKF Baker AWA-IV and Baker DX static motor analyzers test and analyze the integrity of the motor's insulation system and motor circuits. SKF Baker Dynamic Motor Analyzer EXP4000 monitors for health and performance issues with a motor/machine system's power supply, load, and the motor itself. Together they provide a full spectrum of test and monitoring capabilities that generate information required to accurately diagnose and predict imminent failures and make good maintenance decisions

Features

Static motor analyzers:

- Surge test
- Polarization index (PI) tests
- DC step-voltage tests
- Megohm [MΩ] tests
- Winding resistance tests

Dynamic motor analyzers:

- Torque analysis
- Continuous monitoring
- Vibration
- Power condition

- Comprehensive motor testing that identifies problems before they can cause motor failure and downtime
- Motor/machine system condition monitoring and troubleshooting
- Cost-effective, accurate analysis that improves maintenance decision-making and management
- Portability, ease-of-use

Faults identified by the EXP4000 and Baker AWA-IV

Eccentricity (dynamic, static)

٠

SKF

Supply	Loading issues
Power quality	Over/under loading
Poor performing transformers	Process
Short, medium, long range trip settings	
Connection issues (junction box in motor)	Mechanical
Lead-line insulation deterioration	Bearing faults
	Misalignment
Ground wall insulation	Fan unbalances
Weakness	Belt frequencies
Dirt	Worn Impellers
Moisture	Gear mesh frequencies
Dry rot, brittle	VED
Cracks	VID
Winding inculation and mater circuit	Power quality
winding insulation and motor circuit	Shorted IGBT's
Turn-to-turn, phase-to-phase, coil-coil insulation weakness	Feedback loop
Shorts, opens	Process information
Reversed coils	Tuning /setup
Phase unbalanced (turn count)	Coff stort
Phase unbalanced (wire size)	Son stan
_	Tuning /setup
Rotor	Troubleshooting
Cracked bars	
Poor welds	
Broken bars	

Certified motor rewinders

"The seal popped out 2 days after the motor was repaired"

"This motor has failed repeatedly in the last 3 years. We do not exactly know why."

"We have spent thousands on this motor!"

Repair – SKF Certified Rebuilder Program

SKF Certified Rebuilder Program

Developed as a collaborative effort among eligible repair shops, SKF Authorized Distributors and SKF, the SKF Certified Rebuilder Program enhances the expertise of qualified electric motor repair shops to meet the most stringent procedural standards and specifications.

Some electric motor rebuilders simply stand above the rest. The SKF Certified Rebuilder Program helps you find them.

Portable static motor test equipment

For low-to medium-volume production lines with a lot of variation, portable Baker AWA-IV and Baker DX static motor analyzers are an ideal choice. These static motor analyzers excel at tests for weak insulation and motor circuit issues in post production / repair for quality assurance prior to placing motors in service.

Features

- Static motor analyzers measure the integrity of the motor's insulation system and motor circuits with
- Surge tests
- Polarization index tests,
- DC step-voltage tests,
- Megohm [M Ω] and
- Winding resistance tests

- Rock-solid test reliability
- Portability
- Automated (Baker AWA-IV) and manual testing (Baker DX)
- Full spectrum of insulation and circuit tests
- Cost efficient
- Rugged, field-proven designs

Repair – related SKF offers

Repair – SKF Shaft Grounding Ring Kits

SKF Shaft Grounding Ring Kits (TKGR)

The SKF Shaft Grounding Ring Kits have been developed to help prevent bearing failures due to electrical discharge currents which can occur when variable frequency drives are used to control AC motors. They have been specifically designed for retrofitting existing IEC frame size industrial electric motors, reducing the need to spend time, effort and cost in replacing the existing bearings. Other SKF solutions designed to overcome the effects of electrical discharge currents include SKF INSOCOAT and SKF Hybrid bearings.

Features

- The SKF Shaft Grounding Rings Kits (TKGR series) consist of the following items:
- Shaft grounding ring with an aluminium brush holder which helps ensure that the conductive brushes are in contact with the surface of the motor shaft
- Four different sets of mounting brackets (4 brackets per set) which virtually ensures that the SGR can be fitted to almost all IEC frame motors
- Selection of mounting screws, washer and Allen keys NOTE: TKGRs are not suitable for use in explosive atmospheres.

- Helps prevent electrical discharge current damage in rolling bearings
- Protects both motor bearings and the bearings in attached equipment
- Designed to be maintenance free
- Improves system reliability
- Helps reduce motor repair costs and unplanned downtime
- Flexible 3 or 4 bracket mounting design fits virtually any IEC motor
- Easy to order the SKF TKGR. Selection is based on the motor "D" dimension, clears slinger or shaft shoulder

SKF SPEEDI-SLEEVE

SKF SPEEDI-SLEEVE is a well-proven solution used to provide an excellent sealing surface for radial shaft seals while reducing the need for costly shaft machining or maintenance. Its surface properties result in a better counterface than can often be achieved on a shaft. SKF SPEEDI-SLEEVE can be fitted virtually anywhere there is a radial shaft seal.

The new generation of SKF SPEEDI-SLEEVE further enhances the sealing system's performance by reducing the wear on both the sleeve and sealing lip.

Features

- Proprietary stainless steel material and manufacturing processes for increased strength and excellent ductile properties of the sleeve.
- Imperceptible lubricant pockets enable the lubricant to reside on the sleeve and thereby prevent dry running of the sealing lip.
- Wear resistant seal contact surface manufactured to minimize directionality (0° ±0,05) with a finish of Ra 0,25 to 0,5 μm (10 to 20 μin.).
- Removable flange for simplified installation.
- Thinwalled design [0,28 mm (0.011in.)] allows the original size to be used for the replacement seal.

- SKF SPEEDI-SLEEVE offers enhanced sealing system performance and benefits for both OEM and aftermarket customers, helping to achieve the following:
- Higher productivity
- Reduced warranty claims
- Increased mean time between failures
- Reduced maintenance and repair costs
- Reduced environmental impact

Potential root causes for bearing failures

Root Cause Failure Analysis – First Steps

Causes of operational damage:

Waterial fatigue
 Ineffective labrication

- Worston Sales brineling

Operational misalignment

· Passage of electric current

through the bearing (current

Ineffective sealing

insikage!

The ISO 15243 standard is based primarily on features that are visible on the rolling elements, recreases and other functional surfaces

Causes of pre-aperational damage: - incorrect shaft and hexaing fits - Defective bearing seats on shafts

- and in housings - Scale misalignment Raulty mounting practices.
- Recape al electric surrent through the bearing (aconsive valtage)
- · Transportation, hundling and storage

Fatigue

Failure of the rolling contact metal surface asperities due to inadequate lubrication

Wear

Abresite wear The result of inadequate lubrication or the ingress of contaminants

Adheavement Magerial transfer from one surface to another as a result of historial heat

Molecure contesion Oxidation of the european in the presence of month.

Fratting campalen The axidation and wear of surface aspentiles under oscitating micromovement between mating surfaces

False brindling Shalow depressions in convergituding elements central saused by systic

beening

For more information on interimp, damage, only to inclu-on its SHP beaming manistrance handblock. Caper Tearing Earlings and first caused

Electrical erasion

Excessive voltage

Dents as a result of particles

that are even rolled in the received/olling element centact ansas

sharp objects

Perced Inschore

tensile strength

Fatigue thacture

the material

fatigue strength limit of

"No possed to provided by a contrary of

Relationships of characteristics and causes of damage on bearings

Possible			Operating					Environmental factor				Lubrication					Mounting							Other					
Failure modes with characteristics		Over koud	Overspe ed	Ecossive freq. of loads/speed dranges	V Brations	Shuft/housing deflection	Terrostature too hish Asw	Dust and dirt ingress	Water ingress	Electrical leakage	We and viscosity	(Consistency) additives adection	Lack of lubricant	Boess of ubricant	Impurkies	In correct handling (sheck las ds)	Mounting procedures	Fit too tight	Pit too kow	Titing/missignment	horred setting	hoore dilocating (damping)	Storage	Transportation (vibration/Modil)	Bearing selection	Equipment design	Manufacturing concerns	Material amounts	
Flaking, spalling, peeling		×	Γ			×	×	Г	Γ	Π	×	×	×			×	×	×		×	×			×	×	×	×	×	
. angus		Burnishing, micro cracks		×	×	×		×	×	×	×	×	×	×	×	×		×				×		×		×	×		×
Wear	Abrasive	Excessive wear	Γ	×	×	×	×	×	×	×	×	×	×	×		×	Г		×	×	×	×	×	Γ		×		\square	×
		Scratches, scores		×	×			1	×	Г	Π		×			×	×	×							×			Π	
	Adhesive	Setting marks, smearing	×		×		×	×				×	×	×	×			×	×	×	×					×	×	×	×
		Hot runners	×	×	×		×	×				×	×	×	×			×	×		×	×	×			×	×	×	×
Corrosion		Moisture corresion								×		Γ	×			×		×						×	×		×		
		Fretting corresion	×		×	×	×													×	×	×	×			×	×	×	
		False brindling			×	×							×							×				×	×	×			
Electrical		Craters, fluting							Τ	Γ	×	Γ															×	Π	
Plastic deformation		Depressions	×				×	×		Ī		Γ			×		×	×	×		×	×	×	×	×	×	×		×
		Debris Indentation	Г					IF	×			F				×	×	×									×	×	
		Nicks, gouges															×	×										×	
Fracture and cracking		Forced fracture	×	×		Γ		×	Ē	Γ		Г					×	×	×		×	×	×			×	×	×	×
		Fatigue fracture	×	×	×	×	×													×	×	×	×			×	×	×	×
		Thermal cracking	×	×	×			×				×		×	×			×	×			×					×		×

@ 530 is a registered endemark of the 530 Group. © 56 Group 2013 The company of this publication are the case right of the publisher and may not be reproduced (a set as social of the strategy periods in a property lever, Care Sug laws (pakes of the accuracy of the information estimated is this publication to an ordering case is accessed for any laws of attration whether direct, indirect or consequential articles and other of the information constantion lever. US BUTH 13557 DN - April 201

SKF

Special applications

There is no "one size fits all" for the various requirements and specifications for emergency fans.

SKF knowledge and experience can help you develop an economical solution for your design by carefully selecting the bearings':

- Materials
- Heat treatment
- Cage
- Sealing system
- Lubricant and
- Tolerances

#