Electronic Safety Sensors and Solenoid Interlocks Product information I Release 03

(8) 5CHmER5RL

K. A. Schmersal GmbH

Industrielle Sicherheitsschaltsysteme

Möddinghofe 30
D - 42279 Wuppertal
P.O. Box 240263

D - 42232 Wuppertal

Phone $+49-(0) 2$ 02-64 74-0
Fax $\quad+49-(0) 2$ 02-64 74-100

E-Mail info@schmersal.com Internet www.schmersal.com

3llinimin Mes

B

Table of contents

Technology and user advantages Page 4
Electronic safety sensors
CSS 34 safety sensor Page 11
CSS 180 safety sensor Page 15
Electronic solenoid interlocks and safety switches with separate actuator
AZ 200 safety switch with separate actuator Page 19
AZM 200 solenoid interlock Page 22
AZ/AZM 200 actuator .Page 24
MZM 100 magnetic interlock Page 27
Serial diagnostic for functional monitoring
SD-Gateway for PROFIBUS SD-I-DP-V0-2 Page 31
Accessories for series-wiring with serial diagnostic Page 35
Diagnostic tables of the electronic safety switches, interlocks and sensors Page 39
Safety controllers for electronic sensors and interlocks
AES 1135 Page 51
AES 1235 Page 52
SRB 031MC Page 53
SRB 301LC/B Page 54
SRB 301MC .Page 55
SRB 304ST .Page 56
SRB 324ST Page 57
Wiring examples for application and use Page 59
Connection of sensors and interlocks to various safety controllers Page 75

The data and specifications in this catalogue have been thoroughly checked.
Technical modifications and errata reserved.

Non-cont

The electronic monitoring of moving safety guards including actuation in non-contact solenoid interlocks enables the wear-free and noncontact detection of the respective actuator. The patented pulse-echo technology permits large tolerances in the approach of the coded actuator, both in the switching distance and the misalignment.
Despite this, the switching points and hysteresis are extremely repeatable and constant.

The performance and capabilities of the safety sensors and solenoid interlocks are covered by the following testing standards:

- Defined behaviour under fault conditions to EN 60947-5-3, self-monitoring classification PDF-M
- Requirements on safetyrelated parts up to PL e to EN ISO 13849-1 or control category 4 to EN 954-1
- Requirements of EN 61508/ use up to SIL 3 applications

The requirements of DIN EN 61508 furthermore guarantee the user extremely high EM interference immunity. In addition, the standard allows that a signal is given for certain failures before the machinery completely switched off. This enables putting the machinery safely to a hold position before being switched off.

The using of microprocessor technology allows an intelligent diagnostic as well as a smooth and fast failure detection, e.g. in case of cross-shorts or wiring errors.

The safety channels of the electronic sensors and electronic solenoid interlocks can be wired in series to build a chain of up to 31 components, depending on the type of device used. Because of the independent functional check, control category 4 to EN 954-1 is retained for this series-wired chain. The chains can also consist of a mix of the safety sensors and solenoid interlocks described in this brochure.

Operating principle

All products of the CSS series have the same operating principle. They use the pulse-echo technology patented by Schmersal to detect the actuator.

The sensor emits electromagnetic pulses. When the actuator approaches the sensor, the actuator starts oscillating at a predetermined resonant frequency due to the induced energy.

These oscillations are in turn read by the sensor. While doing this, the sensor evaluates the distance with regard to the actuator as well as the coding of the actuator. The actuator identified by the sensor is interpreted as a closed safety guard and the safety outputs are enabled.

Due to this operating principle, the sensor is not suitable for mounting behind metal walls, e.g. stainless steel covers, considering that the oscillation to be detected cannot penetrate the metal.

Application

The electronic safety sensors and solenoid interlocks are used for monitoring moving safety guards. When the safety guard is opened, the machine is stopped and the dangerous restart of the machine is in all cases suppressed.

Their essential advantage is in the non-contact detection of the safety guard's position. They therefore are completely wear-free and insensitive to misalignment or offset of the sensor and the actuator.

Electronic safety sensors Due to their compactness, there are numerous applications for CSS sensors. Because of their high repeatability, an extremely low hysteresis and the absence of double switching points in the actuation range, they can be fitted to a wide variety of safety guards or they can be employed for position monitoring on machines axes.

The application possibilities of the CSS 34 are considerably extended by its four different approach directions.

Mounting on aluminium profiles is in particular carried out smoothly and quickly by means of just two screws using the integral mounting plate. Rotating slotted washers in the mounting plate facilitate an accurate alignment, even with inaccurate mounting holes.

In this way, the sensors can be used in almost any place where required.
The encapsulated sensors and their actuator are insensitive to shocks, vibrations and dirt.

The CSS safety sensors consequently can be used anywhere, especially where protection against dangerous run-down movements of the machine is not required.

Safe lock

Electronic solenoid interlocks

Hazardous areas on machinery and plants must remain inaccessible until all dangerous machine movements have come to a standstill. For this reason, safety sensors may not be used. According to EN 1088 solenoid interlocks have to be fitted.

A door offset of approximately 5 mm is permitted with the CSS sensors. The mechanical design of the actuator furthermore enables the swivelling of the complete enclosure, which is fitted to the safety guard.

In this way, irregular sagging of the safety guard can be compensated within large limits, i.e. in this situation, the actuator still can be smoothly and accurately inserted in the switch (AZ 200) or in the solenoid interlock (AZM 200).

This mechanical design feature ensures that the component is not damaged despite the offset of the actuator and the component; this in turn leads to a higher machinery and plant productivity.

Because of their separate actuator unit, facilitating the intuitive and ergonomic operation of the safety guard, the AZ and the AZM 200 are particularly suitable for use on safety guards, protective fencing or machine housings.

The actuator unit also enables the integration of an additional sensor, which is used for safety guard monitoring. With the help of this second sensor, PL e to EN ISO 13849-1 or control category 4 to EN 954-1 is realised with only one interlock and one switch on the safety guard. This unique feature replaces the second switch. This saves additional costs for the switch and its fitting.

Also the optional emergency exit has been developed especially for use on safety guards, protective fencing and machine housings. It enables the unlocking and opening of the safety guard with just one hand movement by simply turning the emergency handle located on the inside of the hazardous area.

Since solenoid interlocks are either locked or unlocked by a solenoid, they require different solutions for manual unlocking in a power-off condition than for unlocking during machine operation.

Interlocks basically can be equipped with the following unlocking features:

Manual release

Machinery fitted with power-to-unlock solenoid interlocks normally have a way of opening the safety guard in case of power failure, usually by means of a tool such as a triangular key.
The Schmersal solenoid interlocks are fitted with this kind of auxiliary unlocking mechanism, the so-called "manual release".

Emergency exit

An emergency exit allows an intentional opening of the safety guard from inside the machine without tools, for example when staff are trapped inside a machine.

The solenoid interlocks have two different operating principles: the power-tounlock principle and the power-to-lock principle.

With the power-to-unlock principle, the safety guard is mechanically locked in de-energised condition by a spring and unlocked by energizing the solenoid. With the power-to-lock principle, the safety guard is mechanically locked by magnetic force (i.e. by energizing the solenoid) and unlocked by spring force.
As the power-to-lock solenoid interlock can be unlocked in de-energised condition, thus enabling the safety guard to be opened immediately, the use of power-to-unlock solenoid interlocks is strongly recommended for the protection of personnel against hazardous stored energy (e.g. run-on movements).

The AZM 200 is available both as power-to-unlock and as power-to-lock version.

MZM 100 electronic magnetic interlock In this new generation of magnetic interlocks, the actuator simultaneously is the armature of the magnet, which is attracted with a force that can be monitored. This interlock can be used for monitoring guard doors or flaps.

The special features of this component are the monitoring of the potential holding force between the armature and the electromagnet means of a measurement of the magnetic parameters and the detection of the armature by means of the CSS principle. This "non-contact" operating principle offers extended adjustment possibilities for both units. The actuator unit (armature) and the interlocking unit (magnet) build a closed circuit.

Interlocking unit

The interlocking unit is installed on the safety guard; the actuator unit directly on the moveable guard door. To lock the actuator unit, the armature plate must be on the pole shoes of the current-carrying magnet.

The permanent monitoring of the magnetic parameters guarantees a safe holding force. The component is unlocked by switching off the magnet current.

The interlocking unit is equipped with a dual-channel processor system with redundant structure to measure the holding force and to detect the actuator in the actuator unit; this system furthermore monitors both enabling paths.

These outputs are capable of controlling two contactors or one safety relay combination. They also can be monitored by a safety controller.

The pulse-echo technology prevents defeating of the component by simple means.

Detecting and

The integral electronics of the electronic safety sensors and the electronic solenoid interlocks allows an extensive diagnostic of the respective operating conditions.

The diagnostic is available in each individual component, but it can also be used when different safety components of the CSS range are serieswired.

The operating status is displayed by the easily visible diagnostic LED's located on the component. It is additionally provided through a diagnostic output. To this end, two options can be chosen: the conventional diagnostic output or the serial diagnostic cable.

The diagnostics in the electronic safety sensors CSS 180, CSS 34, the solenoid interlocks AZM 200 and MZM 100 or the electric safety switch AZ 200 is identical, however adapted to the respective function. Further details can be found in the product data sheets in the product section

Failure

Failures, which no longer guarantee the proper functioning of the AZM 200 solenoid interlock, the MZM or CSS sensors (internal failures), will result in an immediate deactivation of the safety outputs. Failures, which do not immediately affect the safety function of the solenoid interlock, magnetic interlock or CSS sensor will result in a delayed switch-off.

Failure warning

The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position.
This prevents the breakage of tools and work pieces and increases the machine productivity.

LED functions
Green supply voltage on
Yellow operating status
Red error (refer to flash codes)

Example of the diagnostic function of the AZM 200 solenoid interlock

Display (red)	Flash codes	Meaning	Autonomous switch-off after
1 flash pulse	$\boxed{\square}$	Failure (warning) output Y 1	30 min
2 flash pulses	$\square \square$	Failure (warning) output Y2	30 min
3 flash pulses	$\square \square \square$	Failure (warning) cross-wire	30 min
4 flash pulses	\square	Failure (warning) over-temperature	30 min
5 flash pulses	$\square \square \square \square \square$	Actuator (target) error	0 min
6 flash pulses	$\square \square \square \square$	Error target combination	0 min
Continuous red	$ـ$	Internal failure	0 min

displaying

The serial diagnostic
Sensors / interlocks with serial diagnostic output have a serial input and output cable instead of the conventional diagnostic (signal) output. If these SD components are daisychained, the safety channels as well as the serial diagnostic cables are wired in series. The thus created "bus line" or "collecting main" of diagnostic information is passed to a serial diagnostic gateway for monitoring. In this way, a maximum of 31 components can be consecutively daisychained, also as series-wiring of different components.

Serial diagnostic gateway the series-connected chain, for PROFIBUS SD-I-DP-V0-2 e.g. to unlock a solenoid The PROFIBUS Gateway SD-I-DP-V0-2 converts the serial signals into the PROFIBUS DP-V0 protocol. This serial Diagnostic Interface is integrated as slave into an existing PROFIBUS DP System. In this way, the diagnostic signals can be monitored by a PLC.

Every connected safety sensor/ solenoid interlock loads status signals, warning or failure messages to the linked PLC. The PLC sends control commands to the components of

This concept has multiple advantages: not only the amount of wiring is considerably reduced, it furthermore provides useful information about each participating sensor and the control of the individual interlock releases from the connected PLC. This function can considerably reduce machine downtime.

Download now

ER2M151-Kunstiongens furation Eitras ?

Dstei Beateten Ansidt farcriten Extras

Sie befinden sich hier:
startseite Sicheres schalten

Hinweis

Merkmale:

Kunststoffgehduse
Wilfsentriegelung oder Notentsperrung

- hohe Lebensdauer
- schutzisoliert ${ }^{[}$
- hohe Zuhaltekraft 2000 N
- 30 N Rastkraft
- Anschlussraum
- Ruhestromprinzip/Arbeitsstromprinzip
- 3 Leitungseinfuhrungen $\mathrm{M} 16 \times 1,5$
- Betatigerspiel in Betatigungsrichtung $5,5 \mathrm{~mm}$

Detail - Infos web2CAD

Zubehör
) Betätiger
PDF-Downloads
Baumusterpritbescheinigung (Bourehhe, PDF 950 KB, Sprachen: DE
Bumustarpriffeschterijoung (Baureihe, PDF 932 KB , Sprachen: EN)
Datenblart (Bsurehe, PDF 52 KB, Sprachen: DE)
Datenblatt (Baurehe, PDF 481 KB, Spracheni: EN)

Daterblatt (Baurehe, PDF 482 kb, Sprachen: FR)
Ostenblatt (Bsureihe, POF 767 KB, Sprachen: ES)
Konformitiserklisung (Baureihe, PDF 81 KB, Sprachet: $\mathrm{DE} / \mathrm{EN}$)
"antage und Anschlossynletiong (Besreihe, PDF 459 KB , Sprachen: DE/ENFR)
Montage und Anschlussanletung (Betstiger, PDF 176 KB , Sprachen: DE/ENFR)

Data sheets, mounting and wiring instructions, declarations of conformity and much more at: www.products.schmersal.com

Overview of the features

Actuation advantages

- Non-contact principle, no mechanical wear
- 4 actuating directions
- Side faces can be rotated in 3 positions
- Rated switching distance at the head 12 mm , at the side faces 14 mm
- Sensor functioning with max. 36 mm misalignment with regard to the actuator
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of up to 31 sensors in control category 4 to EN 954-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation, e.g. sagging of a safety guard

Classification

- Classification PDF-M to EN 60947-5-3
- Performance Level PL e to EN ISO 13849-1
- Control category 4 to EN 954-1
- Up to SIL 3 applications to IEC 61508, PFH value $3.6 \times 10^{-9} / \mathrm{h}$

Sensor CSS 34

- Thermoplastic enclosure
- Classification PDF-M to EN 60947-5-3
- PL e to EN ISO 13849-1
- Control category 4 to EN 954-1
- Up to SIL 3 applications to IEC 61508
- 2 short-circuit proof p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of up to 31 sensors in control category 4 to EN 954-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet
- Sensor with connecting cable or with integrated connector

Sensor CSS 34F0/F1

Additional functions of the CSS 34F0/F1:

- To control positive-guided relays without downstream safety controller
- Suitable as individual or end device in series-wired chains of standard sensors to replace the safety controller
- Self-monitored series-wiring of up to 30 CSS 34 sensors and one CSS 34F. sensor in control category 4 to EN 954-1
- CSS 34F. sensor with integrated connector
- CSS 34F0: without edge monitoring of the enabling button, suitable for automatic start
- CSS 34F1: with edge monitoring of the reset button

Approvals

(ϵ
Ordering details
CSS (1)-34-(2)-(3)-M-(4) Safety sensor

No.	Replace	Description
(1)	12	Switching distance S_{N} (mm) for head actuation for sideways actuation
(2)	14	S
(3)	V	Lateral actuating surface Frontal actuating surface
(4)	SD	with diagnostic output with serial diagnostic cable
L	ST	with connecting cable with integrated connector

Approvals

© ${ }^{6}$ © (UL)
庖* (UL)

* Under preparation

C

Ordering details

CSS (1)-34(2)-(3)-D-M-ST Safety sensor No.

Replace	Description
12	Switching distance S_{N} $(\mathrm{~mm})$ for head actuation

14

F0

F1
(3) S

S
V

Approvals

Ordering details

CST 34-(1)-1
No. Replace | Description (1)

No.	Replace	Description
(1)	V	Rounded frontal actuating surface Lateral actuating surface
	S	

Technical data
Standards: EN 60947-5-3, EN ISO 13849-1,
U_{i} :
32 VAC/DC
800 V
0.1 A
$10:$
$\begin{array}{ll}\text { Response time: } & <30 \mathrm{~ms} \\ \text { Duration of risk: } & <60 \mathrm{~ms}\end{array}$
Protection class: < II
Overvoltage category: III
Degree of pollution: 3
EMC rating:
EMC interfering radiation:
Safety outputs Y1/Y2:
to EN 61000-6-2
environment A
NO function,
dual-channel, shortcircuit proof, p-type
Voltage drop: $\quad \min \left(U_{e}-1 \mathrm{~V}\right)$
$\mathrm{U}_{\mathrm{e} 1}:$
Leakage current I_{r} : $<0.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{e} 1}: \quad \max .0 .25 \mathrm{~A}$, ambient temperature-dependent
Minimum operating current I_{m} : $\quad 0.5 \mathrm{~mA}$
Utilisation category: DC-12, DC-13
$\mathrm{U}_{\mathrm{e} 1} / \mathrm{l}_{\mathrm{e} 1}$:
Diagnostic output: p-type, shortcircuit proof
Voltage drop: $<5 \mathrm{~V}$
$U_{e 2}: \quad \min .\left(U_{e}-5 \mathrm{~V}\right)$
$\mathrm{I}_{\mathrm{e} 2}$: max. 0.05 A
Utilisation category: DC-12, DC-13
$\mathrm{U}_{\mathrm{e} 2} / \mathrm{l}_{\mathrm{e} 2}$:
24 VDC / 0.05A
Wiring capacitance for
serial diagnostic: max. 50 nF

Classification:

To EN ISO 13849-1: PL e
To EN 954-1: control category 4
To EN 60947-5-3: PDF-M
To IEC 61508: suitable for SIL 3 applications
PFH value: $3.6 \times 10^{-9} / \mathrm{h}$
Service life: 20 years

Safety controller

Requirements for the safety controller Dual-channel safety input, suitable for p-type sensors with normally-open (NO) function.
The internal function tests of the sensors cause the outputs to cyclically switch off for max. 0.5 ms , this must be tolerated by the safety controller. The safety controller must not be equipped with cross-wire detection.

The programme of suitable safety controllers can be found on page 49 ff.

Electronic safety sensor CSS 34

Sideways misalignment

Actuation through the rotating side face of sensor and actuator
Actuating curve

Possible misalignment

Head actuation of sensor and actuator Actuating curve

Possible misalignment

Connection

Wiring of the CSS 34 safety sensor with connecting cable (ordering suffix -L)

Sensor with diagnostic output	Sensor with serial diagnostic	Colour of the connecting cable (ordering suffix -L)
A1 Ue	A1 Ue	BN (brown)
A2 GND	A2 GND	BU (blue)
X1 Safety input 1	X1 Safety input 1	WH (white)
X2 Safety input 2	X2 Safety input 2	VT (violet)
Y1 Safety output 1	Y1 Safety output 1	BK (black)
Y2 safety output 2	Y2 safety output 2	RD (red)
Diagnostic output	SD output	GY (grey)
Without function	SD input	PK (pink)

Wiring of the CSS 34 and CSS 34F0/F1 safety sensors with connector (ordering suffix -ST)
Connecting cable with mould connector (female) M12x1, 8-pole

	article $\mathrm{n}^{\circ} 1193608$ article $\mathrm{n}^{\circ} 1193609$ article $\mathrm{n}^{\circ} 1193610$		
Sensor with diagnostic output	Sensor with serial diagnostic*	Pin configuration connector	Colour of the connecting cable
A1 Ue	A1 Ue	Pin 1	BN (brown)
A2 GND	A2 GND	Pin 3	BU (blue)
X1 Safety input 1	X1 Safety input 1	Pin 2	WH (white)
X2 Safety input 2	X2 Safety input 2	Pin 6	VT (violet)
Y1 Safety output 1	Y1 Safety output 1	Pin 4	BK (black)
Y2 Safety output 2	Y2 Safety output 2	Pin 7	RD (red)
Diagnostic output	SD output	Pin 5	GY (grey)
Without function	SD input	Pin 8	PK (pink)
* currently not available for CSS 34F0/F1			

Connecting cable with mould connector (female) M12x1, 8-pole
Note: these cables with yellow tape are no longer available.

$8 \times 0,23 \mathrm{~mm}^{2}$,	$2,5 \mathrm{~m}$ long	article $\mathrm{n}^{\circ} 1184290$ 5 m long 10 m long
	article $\mathrm{n}^{\circ} 1184291$	
article $\mathrm{n}^{\circ} 1184292$		

Sensor with diagnostic output

Sensor with serial diagnostic* A2 GND
X1 Safety input 1
X2 Safety input 2
Y1 Safety output 1
Y2 Safety output 2
SD output
SD input

Pin configura-
Colour of the connecting cable

WH (white)
RD (red)
BN (brown)
BK (black)
VT (violet)
BU (blue)
GY (grey)
PK (pink)

Sideways misalignment

The long side allows for a maximum displacement of 36 mm of sensor and actuator (e.g. mounting tolerance or safety guard sagging).

The long side allows for a maximum transverse misalignment of max. $\pm 8 \mathrm{~mm}$.

Legend

Switching distance

Possible misalignment
V from front, through the rounded faces
V1 through the long side with identification plate
V2 through the small side with identification plate
Son Switch-on point
$\mathrm{S}_{\text {OFF }} \quad$ Switch-off point $\quad \mathrm{S}_{\mathrm{ON}}<\mathrm{S}_{\mathrm{H}}<\mathrm{S}_{\text {OFF }}$
$\mathrm{S}_{\mathrm{H}} \quad$ Hysteresis area
$\mathrm{S}_{\mathrm{ao}} \quad$ Assured operation point
$\mathrm{S}_{\mathrm{ar}} \quad$ Assured release point to EN 60947-5-3

Overview of the features

Actuation advantages

- Non-contact principle, no mechanical wear
- Suitable for flush mounting
- Rated switching distance 8 mm
- Misaligned actuation possible
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof p-type safety outputs (24 VDC per 500 mA)
- Self-monitored series-wiring of max. 16 sensors in control category 4 to EN 954-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Increased availability by pre-signalling of failures during machine operation, e.g. sagging of a safety guard
- Controlled shutdown of the machine under observation of the running processes in case of emergency

Classification

- Classification PDF-M to EN 60947-5-3
- Control category 4 to EN 954-1
- Up to SIL 3 applications to IEC 61508, PFH value $<6.1 \times 10^{-9} / \mathrm{h}$

CSS 180

- Thermoplastic enclosure
- Classification PDF-M to EN 60947-5-3
- Control category 4 to EN 954-1
- Up to SIL 3 applications to IEC 61508, PFH value $<6.1 \times 10^{-9} / \mathrm{h}$
- Electronic, non-contact, coded system
- Large switching distance
- Misaligned actuation possible
- High repeat accuracy of the switching points
- Self-monitored series-wiring of max. 16 sensors
- Max. length of the sensor chain 200 m
- Comfortable diagnose through sensor LED and diagnostic output
- Early warning when operating near the limit of the sensor's hysteresis range
- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)

Approvals

雨
C
Ordering details
CSS 8-180-(1)-(2)-(3)

No.	Replace	Description
(1)	2 P	2 p-type safety outputs 2p-type safety outputs and 1 p-type signal
	2P+D	contact (diagnostic)
(2)	E	End or single device
	Y	Device for series-wiring
(3)	M	Multifunction device
	LST	Connecting cable Connecting cable and connector

Technical data

Standards:

Design:
Enclosure:
EN 60947-5-3, EN 954-1, IEC 61508 cylindrical glass-fibre reinforced thermoplastic Protection class: IP 65 and IP 67 to EN 60529 Connection:
cable or cable with connector M12x1
Cable section: according to execution:
$4 \times 0.5 \mathrm{~mm}^{2}, 5 \times 0.34 \mathrm{~mm}^{2}, 7 \times 0.25 \mathrm{~mm}^{2}$ Cable length: max. 200 m
Mode of operation:
inductive
Actuator: CST-180-1, CST-180-2
Rates switching distance S_{n} : 8 mm
S_{ao} :
7 mm
Sar:
10 mm
Hysteresis: $\quad \leq 0.7 \mathrm{~mm}$
Repeat accuracy R:
$\leq 0.2 \mathrm{~mm}$
Response time:
$<30 \mathrm{~ms}$
$\leq 30 \mathrm{~ms}$
Uuration of risk: $\quad 24 \mathrm{VDC}-15 \% /+10 \%$
: 10 A
o: 0.05 A
Leakage current I_{r} :
$\leq 0.5 \mathrm{~mA}$
Protection class:
Overvoltage category:
Degree of pollution:
$\mathrm{U}_{\mathrm{imp}}$:
3
32 VAC/DC
Safety outputs:
Output current:
short-circuit proof, p-type U_{d} :
max. 0.5 A per output max. 0.5 V
l_{e} / U_{e} :
0.5 A / 24 VDC

Diagnostic output: short-circuit proof, p-type
I_{e} / U_{e} :
0.05 A / 24 VDC

Utilisation category:
Ambient temperature:
DC-12, DC-13
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport
temperature:
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Switching frequency f:
approx. 3 Hz
Resistance to shock:
$30 \mathrm{~g} / 11 \mathrm{~ms}$
Resistance to vibration:

$$
10 \text {... 55Hz, }
$$

amplitude 1 mm

Classification:

To EN 954-1: control category 4
To EN 60947-5-3: up to PDF-M
To IEC 61508: suitable for SIL 3 applications PFH value: < $6.1 \times 10^{-9} / \mathrm{h}$

Note

Legend

S Switching distance
V Misalignment
$S_{\text {on }}$ Switch-on point
Soff Switch-off point
$S_{h} \quad$ Hysteresis area
S_{ao} Assured switch-on point
S_{ar} Assured switch-off point to EN 60947-5-3

System components

Actuator CST-180-1

Terminal mounting H 18

Ordering details

Actuator	CST-180-1
Actuator	CST-180-2
Terminal mounting	H 18
Magnetic ball catch	CSA-M-1

Actuators must be ordered separately.
Accessories for series-wiring with serial diagnostic see page 31 ff .

Connection
End or single device: CSS- 8-180-2P+...-E-L...

Connecting cable:
2 m long;
Cable section
4-pole: $4 \times 0.5 \mathrm{~mm}^{2}$, 5-pole: $5 \times 0.35 \mathrm{~mm}^{2}$

Connector: (option)
Connector male M12 x 1, 4-pole
Connector male M12 x1,5-pole

Series-wiring device:
CSS-8-180-2P-Y-L...

Connecting cable:
Inputs (IN),
grey cable 0.25 m long; 4-pole: $4 \times 0.5 \mathrm{~mm}^{2}$,
Outputs (OUT), black cable 2 m long; 4 -pole: $4 \times 0.5 \mathrm{~mm}^{2}$

Connector: (option)
IN: connector female M12 x 1, 4-pole
OUT: connector male M12 $\times 1$, 4 -pole

Multifunction device:
CSS-8-180-2P+D-M-L...

Connecting cable:

2 m long;
Cable section 7 -pole: $7 \times 0.25 \mathrm{~mm}^{2}$

Connector: (option)
Connector male M12 x 1, 8-pole

Wiring

Colour of the connecting cable	Wiring	Pin configuration
BN (brown)	A1 Ue	Pin 1
BU (blue)	A2 GND	Pin 3
BK (black)	Y1 Safety output 1	Pin 4
WH (white)	Y2 safety output 2	Pin 2
GY (grey)	Only 5-pole version: diagnostic output (option)	Pin 5

$\left.\begin{array}{l|l|l|l}\begin{array}{l|l|l}\text { Colour of the } \\ \text { connecting cable }\end{array} & \begin{array}{l}\text { Wiring } \\ \text { grey cable (IN) }\end{array} & \text { black cable (OUT) }\end{array} \quad \begin{array}{l}\text { Pin } \\ \text { configuration }\end{array}\right]$

Colour of the connecting cable	Wiring	Pin configuration
BN (brown)	A1 Ue	Pin 1
BU (blue)	A2 GND	Pin 3
VT (violet)	X1 Safety input 1	Pin 6
WH (white)	X2 safety input 2	Pin 2
BK (black)	Y1 Safety output 1	Pin 4
RD (red)	Y2 safety output 2	Pin 7
GY (grey)	diagnostic output	Pin 5
-	Spare	Pin 8

Safety controller

Requirements for the safety controller
Dual-channel p-type safety input. The internal function tests of the sensors cause the outputs to cyclically switch off for max. 2 ms , this must be tolerated by the safety controller.

The programme of suitable safety controllers can be found on page 49 ff .

Note

- Series-wiring of sensors:

A chain of 16 self-monitored CSS 180 safety sensors can be wired in series without loss of control category 4 to EN 954-1. In this configuration, the redundant output of the first sensor is wired into the input of the next sensor.

- The voltage drop over a long sensor chain should
 be taken into account when planning cable routing. It depends on several factors, which are operating voltage, cable length and section, ambient temperature, number of series-wired sensors and the input load of the safety controller.

The diagnostic tables for the CSS 180 can be found on page 48.

CSS 180LC

- Thermoplastic enclosure
- Classification PDF-M to EN 60947-5-3
- Control category 3 to EN 954-1
- Up to SIL 3 applications to IEC 61508, PFH value $<10^{-8} / \mathrm{h}$
- Electronic non-contact, coded system
- Particularly large switching distance
- Misaligned actuation possible
- High repeat accuracy of the switching points
- Suitable as single device or as end device in the sensor chain
- Diagnostic through sensor LED
- Early warning when operating near the limit of the sensor's hysteresis range
- 2 short-circuit proof p-type safety outputs (24 VDC per 250 mA)

Technical data

Standards:

Design:
Enclosure:

Protection class:

Connection:
Cable section:
Cable length:
Mode of operation:
Actuator:

EN 60947-5-3, EN 954-1, IEC 61508 cylindrical glass-fibre reinforced thermoplastic
IP 65 and IP 67 to EN 60529 cable $4 \times 0.5 \mathrm{~mm}^{2}$ max. 200 m inductive CST-180-1, CST-180-2
Rated switching distance S_{n} :
7 mm
S_{ao} :
6 mm
Sar:
Hysteresis:
Repeat accuracy R:
Response time:
9 mm
$\leq 0.7 \mathrm{~mm}$
$\leq 0.5 \mathrm{~mm}$
$<30 \mathrm{~ms}$
$\leq 30 \mathrm{~ms}$
Duration of risk:

$$
24 \text { VDC - } 15 \% /+10 \%
$$

$\begin{array}{rr}\mathrm{I}_{\mathrm{e}}: & 0.6 \mathrm{~A} \\ \mathrm{I}_{0}: & 0.05 \mathrm{~A}\end{array}$
Leakage current $I_{r}: \leq 0.5 \mathrm{~mA}$

Protection class:
II
Overvoltage category: III
Degree of pollution: 3
Uimp: $\quad 0.8 \mathrm{kV}$
U_{i} : $32 \mathrm{VAC} / \mathrm{DC}$
Safety outputs: short-circuit proof, p-type
Output current: max. 0.25 A per output
max. 0.5 V
U_{d} :
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Ambient temperature:
Storage and transport
temperature:
Switching frequency f :
Resistance to shock:
Resistance to vibration:

Classification:

To EN 954-1:
To EN 60947-5-3:
To IEC 61508:

Connection

Connecting cable: 2 m long; $4 \times 0.5 \mathrm{~mm}^{2}$

Colour of the connecting cable	Wiring
BN (brown)	A1 Ue
BU (blue)	A2 GND
BK (black)	Y1 Safety output 1
WH (white)	Y2 safety output 2

Approvals

Ordering details

CSS-7-180LC-2P-E-L

Only available with connecting cable and without diagnostic output

Legend

S Switching distance
V Misalignment
$S_{\text {on }}$ Switch-on point
$S_{\text {off }}$ Switch-off point
$S_{h} \quad$ Hysteresis area
S_{ao} Assured switch-on point
S_{ar} Assured switch-off point to EN 60947-5-3

Note

Actuators must be ordered separately (ordering details, refer to previous page).

Accessories for series-wiring with serial diagnostic see page 31 ff .

The programme of suitable safety controllers can be found on page 49 ff .

Overview of the features

Advantages

- Sensor technology permits an offset
of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- Intelligent diagnostic
- Modern and ergonomic design
- Simple mounting
- Accurate adjustment through slotted holes
- 3 LED's to show the operating status
- 1 or 3 diagnostic outputs

Classification

- Classification PDF-M to EN 60947-5-3
- Up to PL e to EN ISO 13849-1
- Control category 4 to EN 954-1
- Up to SIL 3 applications to IEC 61508, PFH value $4.0 \times 10^{-9} / \mathrm{h}$

AZ 200

- Thermoplastic enclosure
- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and safety switch
- Up to PL e to EN ISO 13849-1
- Control category 4 to EN 954-1 with door detection sensor T (without additional second switch)
- Up to SIL 3 applications to IEC 61508
- Intelligent diagnostic
- Modern and ergonomic design
- Simple mounting
- Accurate adjustment through slotted holes
- Series-wiring of max. 31 components, without detriment to the control category to EN 954-1
- 3 LED's to show the operating status (refer to table)
- 1 or 3 diagnostic outputs
- Holding force 30 N
- Available with AS-Interface Safety at Work

Technical data

Standards: EN 60947-5-3, EN ISO 13849-1,

Enclosure: EN 954-1, IEC 61508 glass-fibre reinforced thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations
Holding force:
30 N
Protection class:
IP 67 to EN 60529
Protection class: II, 回
Overvoltage category:
Degree of pollution:
Connection:
screw termi
or cage clamps or connector M12 or M23
Cable section

Cable entry:

Series-wiring:

mponents
Cable length:
(Cable length and cable section alter the
voltage drop depending on the output current) Switching distances to EN 60947-5-3:

Hysteresis:
Repeat accuracy:
Switching frequency f:

Ambient conditions:

Ambient temperature:
Storage and transport
temperature:
Relative humidity:

Resistance to vibration:

Resistance to shock:
Switching frequency f:
Response time:
30 mm
max. 1.5 mm
$<0.5 \mathrm{~mm}$
1 Hz
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
30\% ... 95\%,
non-condensing
10 ... 55 Hz , amplitude 1 mm
$30 \mathrm{~g} / 11 \mathrm{~ms}$ 1 Hz

Duration of risk:
$<60 \mathrm{~ms}$

Time to readiness:
Actuating speed:
Electrical data:
$U_{e}: \quad 24$ VDC -15\%/+10\% 0.7 A
max. 0.1 A 800 V
32 VDC

Ordering details
AZ 200①-T-(2)

No.	Replace	Description
(1)	SK	Screw terminals
	CC	Cage clamps Connector M23 x 1, (8+1)-pole
(2)	ST2	Connector M12 x 1, 8-pole Outputs: (1st digit = number of diagnostic outputs, 2nd digit = num- ber of safety outputs) 1 diagnostic output and 2 safety outputs, all p-type

Technical data

Fuse rating: internally short-circuit proof Screw terminals or cage clamps: $\leq 4 \mathrm{~A}$ when used to UL 508;
Connector M12: $\leq 2 \mathrm{~A}$;
Connector M23: $\leq 4 \mathrm{~A}$
EMC rating: to EN 61000-6-2

X1 and X2: only for -1P2P and -SD2P
Ue3/Low: -3V ... 5V
Ue3/High: $15 \mathrm{~V} \ldots 30 \mathrm{~V}$
le3: $\quad>2 \mathrm{~mA}$ at 24 V
Safety outputs Y1 and Y2:
p-type, short-circuit proof
0 V up to 4 V under Ue max. 0.25 A

DC-13
$\leq 0.5 \mathrm{~mA}$
Leakage current I_{r} :
$\leq 0.5 \mathrm{~mA}$
p-type, short-circuit proof
0 V up to 4 V under Ue
-1P2P: max. 0.05 A
-3P2P: max. 0.1 A
($\mathrm{l}_{\text {OUT }}+\mathrm{l}_{\text {OUT2 }}+\mathrm{l}_{\text {OUT3 }} \leq \mathrm{l}_{\mathrm{e} 2}$)
Utilisation category:
DC-13
Wiring capacitance for -SD2P: max. 50 nF
Classification:
To IEC/EN 60947-5-3:
PDF-M
To EN ISO 13849-1:
up to PLe
To EN 954-1:
To IEC/EN 61508:
up to control category 4 up to SIL 3
PFH value: $4.0 \times 10^{-9} / \mathrm{h}$
Service life: 20 years

Note

Safety switch/solenoid interlock and the actuator unit must be ordered separately!

Actuators and accessories can be found on page 24 and 35 .

Accessories for series-wiring with serial diagnostic see page 31 ff .

Suitable connecting cables with mould connector can be found on page 30.

Note

LED functions
Green Supply voltage on
Yellow Operating status
Red Error (refer to flash codes)
The diagnostic tables for the AZ 200 can be found on page 40

Safety controller

The programme of suitable safety controllers can be found on page 49 ff .

The control category 4 to EN 954-1 and PL e to EN ISO 13849-1 achievable with these safety controllers depends on the safety controller as well as on the structure of the entire safety circuit.

Connection

Wiring diagram for device with integrated connector

Pin configuration	Wiring of the safety switch ...-1P2P					Wiring of the safety switch ...-SD2P			Wiring of the safety switch ...-3P2P			
Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8 Pin 9	24 V Operating voltage X1 Safety input 1 GND Ground Y1 Safety output 1 OUT Diagnostic output X2 Safety input 2 Y2 Safety output 2 IN (do not wire) spare					24 V Operating voltage X1 Safety input 1 GND Ground Y1 Safety output 1 OUT SD output X2 Safety input 2 Y2 Safety output 2 IN SD input spare			24V Operating voltage OUT2 Diagnostic output 2 GND Ground Y1 Safety output 1 OUT Diagnostic output 1 OUT3 Diagnostic output 3 Y2 Safety output 2 IN (do not wire) spare			
Ordering suffix -SK -CC	AZ 200.--1P2P					AZ 200.--SD2P			24 V	OUT2	OUT3	IN
	GND		Y1	Y2	OUT	GND	Y2	OUT	GND	Y1	Y2	OUT

Integrated connector
M23, (8+1)-pole

M12, 8-pole

(Ordering suffix -ST2)

Note

Detailed information about the use of serial diagnostic can be found in the mounting and wiring instructions of the PROFIBUS-Gateway SD-I-DP-V0-2 and in the instructions for integration of the PROFIBUS-Gateway.

A detailed description of the PROFIBUS-Gateway SD-I-DP-V0-2 can be found on page 31 of this catalogue.

AZM 200

- Thermoplastic enclosure
- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- Up to PL e to EN ISO 13849-1
- Control category 4 to EN 954-1 with door detection sensor T (without additional second switch)
- Up to SIL 3 applications to IEC 61508
- Intelligent diagnostic
- Modern and ergonomic design
- Simple mounting
- Accurate adjustment through slotted holes
- Series-wiring (max. 31 components), without detriment to the control category to EN 954-1
- 3 LED's to show the operating status (refer to table)
- Manual release from both sides
- 1 or 3 diagnostic outputs
- Holding force 30 N
- Available with AS-Interface Safety at Work

Approvals

TVV © (Ul) us (

Ordering details

AZM 200 (1) (2)-T-(3)(4)

No.	Replace	Description
(1)		Solenoid interlock monitoring
(2)	B	Actuator monitoring SK CC
	ST1	Screw terminals Cage clamps Connector M23 x 1, (8+1)-pole ST2
	Connector M12 x 1, 8-pole Outputs: (1st digit = number of diagnostic outputs, 2nd digit = num- ber of safety outputs) 1 diagnostic output and 2 safety outputs, all p-type	

| 1P2PW | as for -1P2P, combined
 diagnostic signal: |
| :--- | :--- | solenoid interlock locked serial diagnostic output and 2 safety outputs, p-type

Power-to-unlock Power-to-lock
Standards: EN 60947-5-1, EN ISO 13849-1, EN 954-1, IEC 61508 glass-fibre reinforced thermoplastic, self-extinguishing
Mechanical life:
≥ 1 million operations
Fmax:
2000 N
Holding force:
30 N
Protection class:
IP 67 to EN 60529
Protection class: II, 回
Overvoltage category:
Degree of pollution:
Connection:

Cable section:

Cable entry:
Series-wiring:
Cable length:

Technical data

Safety inputs X1 and X2:
$\mathrm{U}_{\text {e3/Low }}$
$-3 \mathrm{~V} . .5 \mathrm{~V}$
15V ... 30V
Ue3/High:
2 mA at 24 V
Safety outputs Y1 and Y2:
p-type, short-circuit proof
0 V to 4 V under Ue
max. 0.25 A
DC-13
$\leq 0.5 \mathrm{~mA}$
$\begin{array}{ll}\text { Utilisation category: } & \text { DC- } \\ \text { Leakage current } \mathrm{I}_{\mathrm{r}} \text { : } & \leq 0.5 \mathrm{~mA}\end{array}$
Diagnostic outputs OUT/OUT2/OUT3:
p-type, short-circuit proof
0 V to 4 V under Ue max. 0.05 A
($\mathrm{l}_{\text {OUT }}+\mathrm{l}_{\text {OUT2 }}+\mathrm{l}_{\text {OUT3 }} \leq \mathrm{l}_{\mathrm{e} 2}$)
$\begin{array}{lr}\text { Utilisation category: } & \text { DC-13 } \\ \text { Wiring capacitance for -SD2P: } \quad \max .50 \mathrm{nF}\end{array}$
Solenoid control IN:
$U_{\text {e4/Low: }}$:
$-3 \mathrm{~V} \ldots 5 \mathrm{~V}$
15V ... 30V
typically 10 mA at 24 V , dynamically 20 mA

100\% ED
Solenoid:
Classification:
To EN ISO 13849-1: up to PL e
To EN 954-1:
To IEC/EN 61508:
up to control category 4
up to SIL 3
PFH value: $4.0 \times 10^{-9} / \mathrm{h}$
Service life: 20 years

Note

LED functions
Green Supply voltage on
Yellow Operating status
Red Error (refer to flash codes)
Operating principle of the diagnostic outputs
The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, e.g. in a PLC.

The diagnostic output is not a safetyrelevant output!

Depending on the used variant, the following diagnostic signals are transmitted:

1P2P variant:
OUT Safety guard closed

1P2PW variant:

OUT Combined diagnostic signal: safety guard closed and solenoid interlock locked

The diagnostic tables for the AZM 200 can be found on page 42.

Safety controller

The programme of suitable safety controllers can be found on page 49 ff .

The control category 4 to EN 954-1 and PL e to EN ISO 13849-1 achieved with these safety controllers depend on the safety controller as well as on the structure of the entire safety circuit.

Diagram of the W-variant

Behaviour of the diagnostic output of the W-variant
(Example: power-to-unlock version)
Input signal solenoid control
IN

Normal cycle, safety guard was locked
OUT

Safety guard could not be locked or failure
OUT

Connection

Wiring diagram for devices with integrated connector

Pin configuration	Wiring of the solenoid interlock ...-1P2P.				Wiring of the solenoid interlock ...-SD2P			
Pin 1	24 V Operating voltage				24V Operating voltage			
Pin 2	X1 Safety input 1				X1 Safety input 1			
Pin 3	GND Ground				GND Ground			
Pin 4	Y1 Safety output 1				Y1 Safety output 1			
Pin 5	OUT Diagnostic output				OUT SD output			
Pin 6	X2 Safety input 2				X2 Safety input 2			
Pin 7	Y2 Safety output 2				Y2 Safety output 2			
Pin 8	IN Solenoid control				IN SD input			
Pin 9	spare				spare			
Ordering	24V $24 . \mathrm{V}$	$\times 1$	X2	IN	24 V	X1	X2	${ }^{N}$
suffix -SK	AZM 200.---1P2P.				AZM 200.---SD2P.			
-CC	GND	Y1	Y2	OUT	GND	Y1	Y2	OUT

Integrated connector

M23, (8+1)-pole (Ordering suffix -ST1)

M12, 8-pole
(Ordering suffix -ST2)

Note

As long as the actuator unit is inserted in the solenoid interlock, the unlocked safety guard can be relocked. In this case, the safety outputs are re-enabled; opening the safety guard is not required.

Detailed information about the use of serial diagnostic can be found in the mounting and wiring instructions of the PROFIBUS-Gateway SD-I-DP-V0-2 and in the instructions for integration of the PROFIBUS-Gateway.

A detailed description of the PROFIBUS-Gateway SD-I-DP-V0-2 can be found on page 31 of this catalogue.

AZ/AZM 200-B1-...

- Actuator for sliding guards
- Actuator with return spring
- Tolerates overtravel of up to max. 5 mm
- Available with or without emergency exit (PO)

Approvals

TVV
Approvals only in combination with switches AZ/AZM 200

Ordering details

AZ/AZM 200-B1-(1)T²
\(\left.\begin{array}{l|l|l}No. \& Replace \& Description

\hline (1) \& L \& Actuating direction left\end{array}\right\}\)| Actuating direction right | |
| :--- | :--- |
| (2) | R |

Technical data

Material:

B1 enclosure:
Actuator:
Mechanical life
$F_{\text {max }}$:
Grivory
zinc die-cast ≥ 1 million operations 2000 N

System components

Actuator B1 with emergency exit P0

Ordering details

Actuator B1 with emergency exit

AZ/AZM 200-B1-..-P0

Lockout tag
SZ 200

AZ/AZM 200-B30-...

- Actuator for hinged guards
- One-hand emergency exit, even in de-energised condition
- Easy and intuitive operation
- NO risk of injury from protruding actuator
- No supplementary door handles required
- Does not protrude into the door opening
- Various handles available
- Can be fitted with or without emergency exit

Approvals

THV with switches AZ/AZM 200

Ordering details

AZ/AZM 200-B30-(1)TA(2)(3)

No.	Replace	Description
(1)	L	Door hinge on left-hand side on right-hand side
(2)	R	G1
(3)	G2	P1
	P20 door handle	
	With rotary button	
With emergency exit		
With emergency exit metal		
With emergency exit with		
inset handle		

Note

The safety switches/solenoid interlocks and the actuator unit must be ordered separately!

Ordering details

Actuator B30 with rotary button AZ/AZM 200-B30-..-G2 with emergency exit metal with inset handle AZ/AZM 200-B30-..-P20 AZ/AZM 200-B30-..-P25

SZ 200

More Details

Overview of the features

Advantages

- Modern and ergonomic design
- Simple mounting, accurate adjustment through slotted holes
- Magnetic interlock (for the protection of man) with innovating and unique operating principle
- Patented
- Smoot surfaces provide for the simplicity of cleaning
- Low risk of injury
- Actuator free from play,
i.e. neutralisation of undesired noises
- Automatic latching (30 N), no mechanical latching required
- Sensor technology permits an offset between actuator and interlock of $\pm 5 \mathrm{~mm}$ vertically and $\pm 3 \mathrm{~mm}$ horizontally
- Intelligent diagnostic signalling of failures
- Series-wiring (up to 31 components, without detriment to the control category
- 3 LED's to show the operating status (refer to table in appendix)

Classification

- Up to PL e to EN ISO 13849-1
- Control category 4 to EN 954-1
with door detection sensor T
(without additional second switch)
- Up to SIL 3 applications to IEC 61508, PFH value: $4.3 \times 10^{-9} / \mathrm{h}$

MZM 100

－Modern and ergonomic design
－Simple mounting，accurate adjustment through slotted holes
－Magnetic interlock for the protection of man with innovating and unique operating principle
－Patented
－Power－to－lock principle
－Smooth surfaces provide for the simplicity of cleaning
－Low risk of injury
－Automatic latching（30 N）， no mechanical latching required
－Sensor technology permits an offset between actuator and interlock of $\pm 5 \mathrm{~mm}$ vertically and $\pm 3 \mathrm{~mm}$ horizontally
－Intelligent diagnostic signalling of failures
－Series－wiring（max． 31 components），without detriment to the control category to EN 954－1
－ 3 LED＇s to show the operating status （refer to table in appendix）

Actuator MZM 100－B1

－The magnetic interlocks and the actuator unit must be ordered separately！
－Actuator free from play，i．e．neutralisation of undesired noises

Technical data

Standards：EN 60947－5－1，EN ISO 13849－1， EN 954－1，IEC 61508
Enclosure： glass－fibre reinforced thermoplastic，self－extinguishing
Mechanical life：
≥ 1 million operations （for guards $\leq 5 \mathrm{~kg}$ ； actuating speed $\leq 0.5 \mathrm{~m} / \mathrm{s}$ ）
$F_{\text {max }}$ ：
500 N
Holding force：
typically 30 N
Protection class：
IP 67
Protection class：
II，回
Overvoltage category：
III
Degree of pollution：
3
Connection：Connector M23
Series－wiring：
max． 31 components
Cable length： max． 200 m
（Cable length and cable section alter the voltage drop depending on the output current）

Ambient conditions：

Ambient temperature：	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport	
temperature：	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Relative humidity：	$30 \% \ldots 95 \%$,

Relative humidity：
30\％．．．95\％，
non－condensing，no icing
Resistance to vibration：$\quad 10 \ldots 55 \mathrm{~Hz}$ ，
amplitude 1 mm
Resistance to shock：
Switching frequency
Response time：
Duration of risk：$<100 \mathrm{~ms}$
Time to readiness：<4 s

Electrical data：

Rated operating
voltage U_{e} ：
24 VDC－15\％／＋10\％
（stabilised PELV）
Rated operating current I_{e} ： 1 A
No－load current I_{0} ：
max．0．5 A
Rated impulse withstand
voltage Uimp：
800 V
Rated insulation voltage U_{i} ： 32 VDC
Fuse rating：
internally short－ circuit proof
Device insulation： to UL $508 \leq 4$ A；
depending on the number of components and loads （Y1，Y2 and OUT）

No．	Replace	Description
（1）		Outputs：（1st digit＝ number of diagnostic outputs，2nd digit＝num－ ber of safety outputs） 1 diagnostic output and 2 safety outputs，all p－type
1P2P	1P2PW	As for－1P2P，combined diagnostic signal： safety guard closed and magnetic interlock locked
（2）	Serial diagnostic output and 2 safety outputs， p－type Without latching With latching	
r		

C

Ordering details

MZM 100－B1 Actuator
MZ．100－B

Approvals

国＊。（U）Us＊Under preparation C
Ordering details
MZM 100ST－（1）（2）－a Magnetic interlock

Approvals

Note

The magnetic interlocks and the actuator unit must be ordered separately！

Accessories for series－wiring with serial diagnostic see page 31 ff ．

Suitable connecting cables with mould
connector can be found on page 30 ．

LED functions

Green	Supply voltage on
Red	Failure
Yellow	Operating status

The diagnostic tables for the MZM 100 can be found on page 44.

Electronic magnetic interlock MZM 100

Technical data

Safety inputs X1 and X2:
Voltage range - 3 V ... 5V: low
Voltage range $15 \mathrm{~V} \ldots 3 \mathrm{~V}$: high
typically 4 mA at 24 V
Safety outputs Y1 and Y2:
p-type, short-circuit proof
Rated operating
voltage $\mathrm{U}_{\mathrm{e} 1}$:
0 V to 4 V under U_{e}
Rated operating current $\mathrm{l}_{\mathrm{e} 1}$: max. 0.25 A
Utilisation category:
Leakage current I_{r} :
DC-13

Diagnostic output OUT:
$\leq 0.5 \mathrm{~mA}$
p-type, short-circuit proof
Rated operating
0 V to 4 V under U_{e}
voltage $\mathrm{U}_{\mathrm{e} 2}$:
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$ max. 0.05A

DC-13
Utilisation category:
Wiring capacitance for -SD2P:
max. 50 nF

Solenoid control IN

Voltage range $-3 \mathrm{~V} \ldots 5 \mathrm{~V}$: low
Voltage range 15 V ... 30V: high,
typically 10 mA at 24 V , dynamically 20 mA 100\% ED
Magnet: 100% ED
Classification: (approval under preparation)
To EN ISO 13849-1: up to PL
To EN 954-1:
up to control category 4 (with appropriate circuit)
To IEC/EN 61508:
up to SIL 3
PFH value: $4.3 \times 10^{-9} / \mathrm{h}$ Service life: 20 years

Connection

Wiring diagram for the device with integrated connector
Pin
configuration

Wiring of the magnetic interlock with diagnostic output
 me magnetic interlock with serial diagnostic

Pin 1	A1 Ue

Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 8
Pin 9
ntegrated connector
M23, (8+1)-pole

A1 Ue
X1 Safety input 1
A2 GND
Y1 Safety output 1
SD output
X2 Safety input 2
Y2 Safety output 2
SD input
spare

Note

Misalignment

Safety controller

The programme of suitable safety controllers can be found on page 49 ff .

The control category 4 to EN 954-1 and PL e to EN ISO 13849-1 achieved with these safety controllers depend on the safety controller as well as on the structure of the entire safety circuit.

Note

Detailed information about the use of serial diagnostic can be found in the mounting and wiring instructions of the PROFIBUS-Gateway SD-I-DP-V0-2 and in the instructions for integration of the PROFIBUS-Gateway.

A detailed description of the PROFIBUSGateway SD-I-DP-V0-2 can be found on page 31 of this catalogue.

System components

Mounting kit MS MZM 100-W

System components

Connecting cable with connector

Ordering details

Mounting kit
(screws included in delivery)

Ordering details

MS MZM 100-W Connecting cable with mould connector (female), M23, (8+1)-pole,
with soldering terminals art. $\mathrm{n}^{\circ} 1187590$ with crimp connection with 5 m LIYY $8 \times 0.75 \mathrm{~mm}^{2}$ with 10 m LIYY $8 \times 0.75 \mathrm{~mm}^{2}$ art. n 1190956 art. $n^{\circ} 1189931$ art. $n^{\circ} 1189978$ M12x1, 8-pole,
2.5 m long, $8 \times 0.23 \mathrm{~mm}^{2} \quad$ art. $\mathrm{n}^{\circ} 1193608$ 5.0 m long, $8 \times 0.23 \mathrm{~mm}^{2} \quad$ art. $\mathrm{n}^{\circ} 1193609$ 10 m long, $8 \times 0.23 \mathrm{~mm}^{2}$
art. $n^{\circ} 1193609$
art. $n^{\circ} 1193610$

Overview of the features

Advantages of the serial diagnostic

- Diagnostic cables of max. 31 safety components can be wired in series
- Series-wiring of different components possible (CSS 34, AZ 200, AZM 200 and MZM 100)
- The diagnostic cable is suitable for series-wiring or daisy-chaining, thus reducing the cabling costs
- Bidirectional communication, i.e. reading of the operational data and unlocking of a solenoid interlock in the chain

Advantages of the integration into the PROFIBUS system

- Default PROFIBUS configuration
- PROFIBUS DP slave
- GSD file for system configuration

Advantages for the communication set-up

- Automatic addressing of the safety components through the serial input
- Automatic and continuous transmission of the operating data of each participating in the diagnostic chain

Advantages of the diagnostic in the PLC

- Mapping of the operating data of the serieswired safety sensors and solenoid interlocks
- Control commands for unlocking all connected solenoid interlocks
- Fast and accurate error messages with detailed information about the failure/malfunction
- Increased availability: pre-signalling of failures during machine operation, e.g. sagging of the safety guard

SD-Gateway for PROFIBUS SD-I-DP-V0-2

SD-I-DP-V0-2

- PROFIBUS-Gateway SD-I-DP-V0-2 for converting serial diagnostic signals to the PROFIBUS DP protocol
- PROFIBUS-Gateway SD-I-DP-V0-2 is a slave in the PROFIBUS system
- Protection class IP 10 device for control cabinet mounting, for standard DIN rails

Technical data

PROFIBUS interface:	9-pole D-SUB connector Default PROFIBUS connection (DP-A, DP-B, 5V, GND)
Protocol:	PROFIBUS-DP -VO upwards compatible
Transmission rate:	9.6 kilo baud ... 12 mega baud
GSD file:	KAS_0b13.GSD
Short-circuiting device:	internal fuse to EN 60127 PolySwitch $0.5 \mathrm{~A} / 60 \mathrm{~V}$
LED indications:	refer to table below
DIP-switch 8-pole:	S1 ... S7: addressing as PROFIBUS slave S8: automatic addressing of the serial participants
Rated operating voltage U_{e} :	24 VDC, -15 \% / +20 \%
Rated operating current I_{e} :	typically 180 mA , max. 250 mA
Rated insulation voltage U_{i} :	32 V
Rated impulse withstand voltage U:	0.5 kV
Overvoltage category:	
Degree of pollution:	2
Storage temperature range:	$\begin{array}{r} -25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}, \\ \text { non-condensing } \\ \hline \end{array}$
Operating temperature range:	$\begin{array}{r} -5^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}, \\ \text { non-condensing } \end{array}$
Relative humidity:	5\%-95\%, non-condensing
Protection class:	IP 10
Resistance to vibration:	$5 \ldots 9 \mathrm{~Hz} / 3.5 \mathrm{~mm} \text { (to IEC 60068-2-6) }$
Resistance to shock:	$15 \mathrm{~g} / 11 \mathrm{~ms}$ (to IEC 60068-2-27)
EMC rating:	to EN 61000-6-2 (2002)
to EN 61000-4-2 (ESD):	$4 \mathrm{kV} / 8 \mathrm{kV}$
to EN 61000-4-3:	$10 \mathrm{~V} / \mathrm{m} / 80 \%$ AM
to EN 61000-4-4 (burst):	2 kV DC supply / 1 kV PROFIBUS \& SD-Interface
to EN 61000-4-5 (surge):	500 V DC supply / 1 kV PROFIBUS \& SD-Interface
to EN 61000-4-6:	$10 \mathrm{~V} / 80$ \% AM
EMC interfering radiation:	to EN 61000-6-4 (2002)
Industrial interfering radiation:	$37 \mathrm{dBIV} / \mathrm{m}$
Electrical connection: SD	connection for max. 31 devices in the serial diagnostic
24 V	+ 24 VDC voltage supply
0 V	GND of the voltage supplyand GND of the diagnostic cable 24 VDC supply, approx. 300 mA , PELV power supply

Approvals

C

Ordering details
SD-I-DP-V0-2 SD Gateway for PROFIBUS

LED signals

"PB"	Continuous red Flashing signal	Profibus error Profibus initialisation
"SD"	Continuous red Flashing signal	SD Gateway error SD Gateway initialisation
"T"	Continuous yellow Flashing signal	SD initialisation error or 'teach' switch active Initialisation error SD participant addresses, teaching required
	"ON" Continuous green	Supply voltage on

SD-Gateway for PROFIBUS SD-I-DP-V0-2

Note

- Serial diagnostic of series-wired safety sensors/solenoid interlocks
- Components with serial diagnostic option: AZ 200
AZM 200
CSS 34
MZM 100

Note

Accessories for series-wiring with serial diagnostic see page 35 ff .

Wiring example

Up to Date

Das Unternatmen
Produlte
Online Katalog
Auftugstechnik Neuheiten Qualitit

Service
Kontakt
Produkte | Neuheiten

Ergonomische Bedienung, kompaktere Bauformen, höheres Sicherheitsniveau, Enkiang vin Produktivitat und Sicherheit, Integration von Funktonen: Das sie - in Kooperation mit dem Erodukenschaften, auf die unsere Entwickler Wert legen, wenn io Produkfamilien schreiben. roduktmanagement - de Pfichtenhefte für neue Produkte ul Gruppe. Immer aktuell! Hier sehen Sie die Ergebnisse: Die Neuheiten der Schmersal Grupper. Im.

- 01.09.2003

ESALAN-Safety Controller
Sichere Bewegungen im Raum
[DFEF [69kb]

- 11.08 .2003

Programmerweiterung bei der Baureihe AZM 161
Erhobte Flexibilitat für Sicherheitszuhaltungen.
04.04. 2003

Sicherheits-Lichtvorhänge und-Lichtgitter mit integrierter Muting-Funktion Für die Absicherung von Gefahrenbereichen.

Die neuen Sicherheits-Lichtvorhänge und . Lichtgitter der Baureihen SLC/SLG 415, die Schmersal EOT auf der Hannover Messe vorstelit, ergänzen das bestehende Programm und zeichnen sich durch Integration der Muting-Funktion aus.

Muting bedeutet, dass optoelektronische Schutzeinrichtungen mit Hefe von zusätzlichen Sensoren in der Lage sind, zwischen Mensch und Material zu

Overview of the features

Wiring tools enabling a fast and smooth series-wiring of electronic sensors and solenoid interlocks of the CSS, AZ/AZM 200 and MZM family

- T-adapter CSS-T

CSS 34 sensors with serial diagnostic can be daisychained by means of T-adapters and conventional cables with $5 / 8$-pole connectors and sockets.
The number of participants is limited by the 2 A-fuse.

- SD junction box

To be used preferably for the series-wiring of MZM and AZM components with high power demand IP 65 enclosure or open IP 00 design for control cabinet mounting

The SD junction box and the T-adapter are suitable for the series-wiring of components with serial diagnostic. When components with conventional diagnostic output are daisy-chained, only the safety channels are wired in series.

Accessories for series-wiring with serial diagnostic

- Enables the series-wiring of CSS 34 sensors. To this end, both the safety channels and the serial diagnostic cable are wired in series.

Terminal connector CSS-T-A

- Supplies the safety channels with operating voltage

Technical data
Rated operating voltage of the CSS 34 sensors to be connected: 24 V (-15\%/+10\%)
Rated operating current of the CSS 34 sensors to be connected:
Fuse of the connecting
cables (circuit breaker):
Ambient temperature $\mathrm{T}_{\mathrm{u}}: \quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Approvals

Approvals
C
Ordering details
CSS-T
T-adapter
Ordering details
CSS-T-A
Terminal connector

Accessories for series-wiring with serial diagnostic

CSS-T and CSS-T-A

With the CSS-T T-adapter, CSS 34 sensors can be daisy-chained. To this end, both the safety channels and the serial diagnostic cables are wired in series.
Sensors with conventional diagnostic output can also be wired in series, though in this configuration, the diagnostic outputs are not evaluated.

The CSS-T-A connector supplies the safety channels with operating voltage.
For the wiring, M12x1 cable extensions can be used. The voltage drop (due to the cable length, cable section, voltage drop per sensor) should be taken into account, as it reduces the maximum number of CSS 34 sensors that can be wired in series.

Wiring example

Accessories for series-wiring with serial diagnostic

SD-2V-F-SK

- For field applications, junction box for 2 components, with screw terminals
- The terminals of the junction box are located in a closed enclosure

SD-2V-S-SK

- For control cabinet mounting, junction box for 2 components, with screw terminals
- Enables wiring in the control cabinet onto standard DIN rails

Technical data

Standards:
VDE 0100

Enclosure:
Protection class:

Insulation protection class:
Overvoltage category:
Degree of pollution:
Connection:
Cable section:
thermoplastic, self-extinguishing SD-2V-F-SK: IP 65 SD-2V-S-SK: IP 00 to IEC/EN 60529 SD-2V-F-SK: II, 回 SD-2V-S-SK: II

SD-2V-F-SK: 3 SD-2V-S-SK: 2 screw terminals $\mathrm{min} .0 .25 \mathrm{~mm}^{2}$ max. $2.50 \mathrm{~mm}^{2}$
(incl. conductor ferrules)
Cable entry: SD-2V-F-SK: $4 \times \mathrm{M} 20 \times 1.5$, for cladding diameter $8 \ldots 13 \mathrm{~mm}$
Number of
connections:

Fuse rating:

Ambient conditions:

Ambient temperature:
Storage and transport
temperature:
Relative air humidity:
to each SD junction box, 2 (optionally 3) components can be connected 3 internal fine fuses, 2 A slow blow, 5×20

Electrical data:

Rated operating
voltage U_{e} :
24 VDC -15\% / +10\% (stabilised PELV)
Rated operating current I_{e} :
Rated impulse withstand
voltage $\mathrm{U}_{\mathrm{imp}}$:
800 V
Rated insulation voltage U_{i} :
32 VDC
Fuse rating:

Approvals

Ordering details	
SD-2V-F-SK	SD junction box for field applications

Approvals

C

Ordering details

SD-2V-S-SK
SD junction box for control cabinet mounting

Diagnostic tables of the electronic safety switches, solenoid interlocks and safety sensors

Diagnostic of the AZ 200 safety switch Page 40
Diagnostic of the AZM 200 solenoid interlock Page 42
Diagnostic of the MZM 100 magnetic interlock Page 44
Diagnostic of the CSS 34 safety sensor Page 46
Diagnostic of the CSS 180 safety sensor Page 48

Diagnostic of AZ 200 safety switch with diagnostic output
Diagnostic outputs
The AZ 200 .-.1P2P safety switch has one
diagnostic output: OUT
OUT Safety guard closed, actuator inserted and no failure detected

The AZ 200 .-.3P2P safety switch has three
diagnostic outputs: OUT, OUT2, OUT3
OUT Safety guard closed, actuator inserted
OUT2 Failure warning
OUT3 Safety guard detected

The diagnostic outputs are protected against short-circuits by means of a common current-limiting circuit.
Therefore: $I_{\text {OUT }}+I_{\text {OUT2 }}+I_{\text {OUT3 }} \leq I_{\text {e2 }}$

Failure

Failures, which no longer guarantee the proper functioning of the AZ 200 safety switch (internal failures), will result in an immediate deactivation of the safety outputs.
Failures, which do not immediately affect the safety function of the AZ 200 safety switch (cross-wire, temperature error, short-circuit +24 VDC at safety output), will result in a delayed switch-off (see table).

After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard.
The safety outputs are enabled and allow a restart of the machine.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

The diagnostic function of the AZ 200 safety switch
The operating condition of the safety switch as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

System condition	LED Green	Red	Yellow	Safety outputs Y1, Y2	Diagno -1P2P OUT	outputs -3P2P OUT	OUT2	OUT3
Safety guard open	On	Off	Off	0 V	0 V	0 V	0 V	0 V
Safety guard closed, actuator not inserted	On	Off	Off	0 V	0 V	0 V	0 V	0 V
Safety guard closed, actuator inserted	On	Off	On	$\begin{gathered} 24 \mathrm{~V} \\ \text { (when } \mathrm{X} 1=\mathrm{X} 2=24 \mathrm{~V} \text {) } \end{gathered}$	24 V	24 V	0 V	0 V
Failure warning ${ }^{11}$, actuator inserted, switch-off approaching	On	Flashes ${ }^{2}$	On	$\begin{gathered} 24 \mathrm{~V} \\ \text { (when } \mathrm{X} 1=\mathrm{X} 2=24 \mathrm{~V} \text {) } \end{gathered}$	0 V	24 V	24 V	0 V
Failure	On	Flashes	Off	0 V	0 V	24V/0V	24 V	0 V
	${ }^{1)}$ after 2) refer	$30 \mathrm{~min}->0$ o flash cod						

Diagnostic tables of the electronic safety switches, solenoid interlocks and safety sensors

Diagnostic of the AZ 200 safety switch with serial diagnostic cable
Safety switch with serial diagnostic cable Safety switches with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output. If safety switches are daisy-chained (i.e. wired in series), the diagnostic input an output data are transmitted through this series-wiring.

Up to 31 safety switches can be wired in series. For the evaluation of the serial diagnostic cable, the PROFIBUS-Gateway SD-I-DP-V0-2 is used. This serial diagnostic interface is integrated as slave in an available PROFIBUS DP network, thus allowing for an evaluation of the diagnostic signals by means of a PLC.

The operational information of the response data and the diagnostic data is automatically and permanently written in an input byte of the PLC for each safety switch in the series-wired chain. The request data for each safety switch are transmitted to the component through an output byte of the PLC.

In case of a communication error between the PROFIBUS-Gateway and the safety switch, the switching condition of the safety outputs of the safety switch is maintained

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position A failure warning is reset when the failure cause is eliminated.

| Bit \mathbf{n}° | Request byte | Response byte | Diagnostic
 failure warning | Diagnostic
 failure |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bit 0: | - -- | Safety output
 enabled | Error output Y1 | Error output Y1 |
| Bit 1: | - -- | Actuator detected | Error output Y2 | Error output Y2 |

The described condition is obtained, when bit $=1 \quad{ }^{\text {1) }}$ after $30 \mathrm{~min}->$ failure

Diagnostic of the AZM 200 solenoid interlock with diagnostic output

Operating principle of the diagnostic output
The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.
The diagnostic output is not a safety-relevant output!

Depending on the component variant, the following diagnostic signals are transmitted:
1P2P-Variant:
OUT Safety guard closed
1P2PW-Variant:
OUT Combined diagnostic signal:
safety guard closed and solenoid interlock locked

Failure
Failures, which no longer guarantee the proper functioning of the AZM 200 solenoid interlock (internal failures), will result in a deactivation of the safety outputs.
Failures, which do not immediately affect the safety function of the AZM 200 solenoid interlock (cross-wire, temperature error, short-circuit +24 VDC at safety output), will result in a delayed switch-off (see table). After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard. The safety outputs are enabled and allow a restart of the machine. A locking chain must be permanently locked to enable the restart.

Flash codes (red)
1 flash pulse
2 flash pulses
3 flash pulses
4 flash pulses

5 flash pulses	E
6 flash pulses	

6 flash pulses	Error target combination
Continuous red	Internal failure

Autonomous switch-off after	Cause

Error in output test or voltage at output Y1 although the output is switched off

Error in output test or voltage at output Y2 although the output is switched off

Cross-wire between the output cables or error at both outputs

Temperature measurement indicates too high an inner temperature

The coding (frequency) of the detected actuator does not match the required value, incorrect or defective actuator

An invalid combination of targets was detected at the 4 coils of the AZM 200 solenoid interlock. (Current setting: latching bolt detected \& door target not detected =>latch breakage or tampering attempt)

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset in the slave when the failure cause is eliminated.

The diagnostic function of the AZM 200 solenoid interlock
The operating condition of the solenoid interlock as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

System condition	Solenoid Power-tounlock	ontrol IN Power-tolock	LED Green	Red	Yellow	Safety outputs Y1, Y2		Diagnostic outputs OUT	
Safety guard open	24 V (0 V)	$0 \mathrm{~V}(24 \mathrm{~V})$	On	Off	Off	0 V	0 V	0 V	0 V
Safety guard closed, actuator not inserted	24 V	0 V	On	Off	Off	0 V	0 V	0 V	0 V
Safety guard closed, actuator inserted, not locked	24 V	0 V	On	Off	Flashes	0 V	24 V	24 V	24 V
Safety guard closed, actuator inserted, locking impossible	0 V	24 V	On	Off	Flashes	0 V	24 V	24 V	0 V
Safety guard closed, actuator inserted and locked	0 V	24 V	On	Off	On	24 V	24 V	24 V	24 V
Failure warning ${ }^{1)}$, Solenoid interlock locked	0 V	24 V	On	Flashes ${ }^{2)}$	On	$24 \mathrm{~V}{ }^{1)}$	$24 \mathrm{~V}{ }^{1)}$	0 V	0 V
Failure	$0 \mathrm{~V}(24 \mathrm{~V})$	24 V (0 V)	On	Flashes ${ }^{2)}$	Off	0 V	0 V	0 V	0 V
	1) after $30 \mathrm{~min}->$ failure 2) refer to flash codes								

Diagnostic tables of the electronic safety switches, solenoid interlocks and safety sensors

Diagnostic of the AZM 200 solenoid interlock with serial diagnostic cable

Solenoid interlock with serial
diagnostic cable
Solenoid interlocks with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output. If solenoid interlocks are daisy-chained, the diagnostic input an output data are transmitted through this series-wiring.

Up to 31 solenoid interlocks can be wired in series. For the evaluation of the serial diagnostic cable, the PROFIBUS-Gateway SD-I-DP-V0-2 is used. This serial diagnostic interface is integrated as slave in an available PROFIBUS DP network, thus allowing for an evaluation of the diagnostic signals by means of a PLC.

The operational information of the response and diagnostic data is automatically and permanently written in an input byte of the PLC for each solenoid interlock in the series-wired chain. The request data for each solenoid interlock are transmitted to the component through an output byte of the PLC.

In case of a communication error between the PROFIBUS-Gateway and the solenoid interlock, the switching condition of the solenoid interlock is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position A failure warning is reset when the failure cause is eliminated.

| Bit \mathbf{n}° | Request byte | Response byte | Diagnostic
 failure warning | Diagnostic
 failure |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bit 0: | Magnet in,
 independent of
 power-to-lock or
 power-to-unlock
 principle | Safety output
 enabled | Error output Y1 | Error output Y1 |
| Bit 1: | - --- | Actuator detected | Error output Y2 | Error output Y2 |

The described condition is obtained, when bit $=1 \quad{ }^{\text {1) }}$ after $30 \mathrm{~min}->$ failure

Functional example of the diagnostic LED's, the serial status signals and the safety outputs

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline System condition \& LED's
Green \& Red \& yellow \& Safety outputs Y1, Y2 \& \begin{tabular}{l}
Res \\
Bit
\[
7
\]
\end{tabular} \& no

6 \& 5 \& byt \& 3 \& 2 \& 1 \& 0

\hline Supply voltage on, safety guard open \& On \& Off \& Off \& 0 V \& 0 \& 0 \& 0 \& X \& 0 \& 0 \& 0 \& 0

\hline Safety guard closed, actuator present \& On \& Off \& Flashes \& 0 V \& 0 \& 0 \& 0 \& X \& 0 \& 0 \& 1 \& 0

\hline Safety guard closed and locked \& On \& Off \& On \& 24 V \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1

\hline Failure warning ${ }^{1)}$, safety guard locked \& On \& Flashes \& On \& 24 V \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1

\hline Failure \& On \& Flashes \& Off \& OV \& 1 \& 0 \& 0 \& X \& 0 \& X \& X \& 0

\hline
\end{tabular}

Diagnostic tables of the electronic safety switches, solenoid interlocks and safety sensors

Diagnostic of the MZM 100 magnetic interlock with diagnostic output

Operating principle of the diagnostic
output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.
The diagnostic output is not a safety-relevant output!

Depending on the component variant, the following diagnostic signals are transmitted:
1P2P-Variant:
OUT Safety guard closed
1P2PW-Variant:
OUT Combined diagnostic signal:
safety guard closed and magnetic interlock locked

Failure

Failures, which no longer guarantee the proper functioning of the MZM 100 magnetic interlock (internal failures), will result in the deactivation of the safety outputs for as long as the risk persists.
Failures, which do not immediately affect the safety function of the MZM 100 magnetic interlock (cross-wire, temperature error, shortcircuit + 24 VDC at safety output), will result in a delayed switch-off (see table).

After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard.
When the safety guard is relocked, the safety outputs are enabled.

The diagnostic function of the MZM 100 magnetic interlock
The operating condition of the magnetic interlock as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

System condition	Magnet control IN	LED's			Safety outputs Y1, Y2	Diagnostic output OUT	
		green	red	yellow		-1P2P	-1P2PW
Guard open	0 V	on	off	off	0 V	0 V	0 V
Guard closed, actuator in	0 V	on	off	flashes	0 V	$24 \mathrm{~V}^{3}$	24 V
Guard closed, holding force too low	24 V	on	off	flashes	0 V	$24 \mathrm{~V}^{3}$	0 V
Guard closed and locked	24 V	on	off	on	24 V	24 V	24 V
Error warning, door locked	24 V	on	flashes ${ }^{2)}$	on	$24 \mathrm{~V}^{1)}$	0 V	0 V
Error	0V/24V	on	flashes ${ }^{2)}$	off	OV	OV	0 V
Unauthorized violent separation of magnetic interlock and actuator	0V/24V	on	flashes	flashes	OV	OV	0 V

[^0]Diagnostic tables of the electronic safety switches, solenoid interlocks and safety sensors

Diagnostic of the MZM 100 magnetic interlock with serial diagnostic cable

Magnetic interlock with serial diagnostic cable
Magnetic interlocks with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output. If magnetic interlocks are daisy-chained, the diagnostic input an output data are transmitted through this series-wiring.

Up to 31 magnetic interlocks can be wired in series. For the evaluation of the serial diagnostic cable, the PROFIBUS-Gateway SD-I-DP-V0-2 is used. This serial diagnostic interface is integrated as slave in an available PROFIBUS DP network, thus allowing for an evaluation of the diagnostic signals by means of a PLC.

The operational information of the request and response bytes is automatically and permanently written in an input byte of the PLC for each magnetic interlock in the serieswired chain. The request data for each magnetic interlock are transmitted to the component through an output byte of the PLC.

In case of a communication error between the PROFIBUS-Gateway and the magnetic interlock, the switching condition of the magnetic interlock is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

Bit ${ }^{\circ}$	Request byte	Response byte	Diagnostic failure warning	Diagnostic failure
Bit 0:	Magnet in, failure reset	Safety output enabled	Error output Y1	Error output Y1
Bit 1:	---	Actuator detected	Error output Y2	Error output Y2
Bit 2:	---	Magnet activated	Cross-wire	Cross-wire
Bit 3:	---	---	Magnet temperature too high	Magnet temperature too high
Bit 4:	---	Input condition X1 and X2	---	Actuator error, coding error
Bit 5:	---	---	Internal failure	Internal failure
Bit 6:	---	Failure warning ${ }^{1)}$	Communication error between PROFIBUS-Gateway and magnetic interlock	Unauthorised violent separation of magnetic interlock and actuator
Bit 7:	Failure reset	Failure (enabling path switched off)	Operating voltage too low	---

The described condition is obtained, when bit =1 1) after 30 min -> failure

Functional example of the diagnostic LED's, the serial status signals and the safety outputs

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline System condition \& \& Red \& yellow \& Safety outputs Y1, Y2 \& Res
Bit
7 \& n

6 \& se \& byte \& 3 \& 2 \& 1 \& 0

\hline Supply voltage on, safety guard open \& On \& Off \& Off \& 0 V \& 0 \& 0 \& 0 \& X \& 0 \& 0 \& 0 \& 0

\hline Safety guard closed, actuator present \& On \& Off \& Flashes \& 0 V \& 0 \& 0 \& 0 \& X \& 0 \& 0 \& 1 \& 0

\hline Safety guard closed and locked \& On \& Off \& On \& 24 V \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1

\hline Failure warning ${ }^{11}$, safety guard locked \& On \& Flashes \& On \& 24 V \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1

\hline Failure \& On \& Flashes \& Off \& OV \& 1 \& 0 \& 0 \& X \& 0 \& X \& X \& 0

\hline
\end{tabular}

${ }^{1)}$ after $30 \mathrm{~min}->$ failure

Diagnostic of the CSS 34 safety sensor with conventional diagnostic output

The opening of a safety guard will immediately disable the safety outputs of the CSS 34 sensor

A cross-wire or any failure that does not immediately affect the safety function of the safety sensor, will lead to a delayed shutdown. In this case, the safety outputs are disabled after 30 minutes if the fault is not eliminated. The diagnostic output however is immediately disabled.

The signal combination, diagnostic output disabled and safety outputs still enabled, can be used in the downstream control to stop the production process in a controlled manner and set the machine safely to a hold position.

| LED (red) | Flash codes | Cause |
| :--- | :--- | :--- | :--- |
| 1 flash pulse | Error output Y1 | |
| 2 flash pulses | Error output Y2 | |
| 3 flash pulses | | Cross-wire Y1/Y2 |
| 4 flash pulses | Ambient temperature too high | |
| 5 flash pulses | | Incorrect or defective actuator |
| Continuous red | | |

Example of the diagnostic function of the CSS 34 or CSS 34F. safety sensor with conventional diagnostic output

Sensor condition	LED's Green	Red	Yellow	Diagnostic output	Safety outputs	Note
I. Supply voltage	On	Off	Off	OV	0 V	Supply voltage on, no evaluation of the voltage quality
II. Actuated	On	Off	On	24 V	24 V	The yellow LED always signals the presence of an actuator within range.
III. Actuated in limit area	On	off	Flashes (1Hz)	$24 \mathrm{~V}$ pulsed	24 V	The sensor must be readjusted before the actuator gets outside of the maximum switching range and the safety outputs are disabled, thus stopping the machine.
IV. Actuated and feedback circuit open *	On	Off	Flashes (5Hz)	24 V	0 V	The sensor waits for a signal from the feedback circuit: FO - Close feedback circuit F1 - Trailing edge on feedback circuit
V. Actuated in limit area and feedback circuit open *	On	Off	Flashes alternatively (1Hz/5Hz)	$24 \mathrm{~V}$ pulsed	0 V	The LED indication combines the sensor functions III and IV
VI. Failure warning, sensor actuated	On	Flashes	On	0 V	24V	After 30 min . if the fault is not eliminated
VII. Failure	On	Flashes	On	0 V	0 V	-

Diagnostic of the CSS 34 safety sensor with serial diagnostic cable

Sensors with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output.
If CSS sensors are daisy-chained, the safety outputs as well as the inputs and outputs of the diagnostic channels are wired in series.

Max. 31 CSS 34 sensors can be wired in series. For the evaluation of the serial diagnostic cable, the serial Diagnostic Gateway for PROFIBUS DP SD-I-DP-V0-2 is used. This serial diagnostic interface is integrated as slave in an available PROFIBUS DP network, thus allowing for an evaluation of the diagnostic signals by means of a PLC.

The operational information of the response and diagnostic data is automatically and permanently written in an input byte of the PLC for each safety sensor in the series-wired chain. The request data for each safety sensor are transmitted to the component through an output byte of the PLC.

In case of a communication error between the PROFIBUS-Gateway and the safety sensor, the switching condition of the safety outputs of the safety sensor is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position A failure warning is reset when the failure cause is eliminated.

Functional example of the status signals, warnings or failure messages
Communication directions: Request byte: from the PLC to the local CSS
Response byte: from the local CSS to the PLC
Warning/failure byte: from the local CSS to the PLC

| Bit n | Request byte | Response byte | Warning or failure byte
 Failure warnings | Failure messages |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bit 0: | Failure reset | Safety output
 enabled | Error output Y1 | Error output Y1 |
| Bit 1: | - -- | Actuator detected | Error output Y2 | Error output Y2 |
| Bit 2: | --- | --- | Cross-wire | Cross-wire |

The described condition is obtained, when bit $=\mathbf{1} \quad{ }^{1)}$ after $30 \mathrm{~min}->$ failure

Function of the diagnostic LED's, the serial status signals and the safety outputs Flash code as in previous version

System condition	LED's Green	Red	Yellow	Safety outputs Y1, Y2	Status signals serial diagnostic byte Bit n° $\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$							
Supply voltage on, not actuated	On	Off	Off	0 V	0	0	0	0	0	0	0	0
Actuated, safety outputs released	On	Off	On	24 V	0	0	0	1	0	0	1	1
Actuated in limit area	On	Off	Flashes $1 \mathrm{~Hz}$	24 V	0	0	1	1	0	0	1	1
Actuated, warning	On	On/ flashes	On	24 V	0	1	0	1	0	0	1	1
Actuated, fault	On	On/ flashes	On	0 V	1	1	0	1	0	1	1	0

The shown bit sequence of the diagnostic byte is an example. A different combination of the operating conditions will lead to a change of the bit sequence.

Diagnostic of the CSS 180 safety sensor

The diagnostic function of the CSS 180 safety sensor
The operating condition of the sensor as well as possible faults are signalled by means of three－color LED＇s in the transparent end cap of the sensor．

The diagnostic output signals failures or faults before the safety outputs are disabled and enables a controlled shutdown in case of emergency．

LED（red）	Flash codes
1 flash pulse	\square
2 flash pulses	－ぃ
3 flash pulses	－ぃぃに
4 flash pulses	－ぃぃに
5 flash pulses	■ூூぃ

Cause

Error output Y1

Error output Y2

Cross－wire，error safety outputs 1 and 2

Ambient temperature too high
Incorrect or defective actuator

The opening of a safety guard will immediately disable the safety outputs of the CSS 180 sensor．

A cross－wire or a failure that does not immedi－ ately affect the safety function of the safety sensor，will lead to a delayed shutdown．In this case，the safety outputs are disabled after 1 minute if the failure is not eliminated．
The diagnostic output however is immediately disabled．

This signal combination，diagnostic output disabled and safety outputs still enabled，can be used in a downstream control to stop the production process in a controlled manner and set the machine safely to a hold position．

Examples of the diagnostic function of the CSS 180 sensor

Sensor condition	LED＇s	Diagnostic output	Safety outputs	Note		
I．Supply voltage on	Green	0 V	0 V	Supply voltage on，no evaluation of the voltage quality		II．Actuated
:---						
III．Actuated in limit range	Flashes yellow					

Safety controllers for electronic sensors and interlocks

Overview of the features:

Apart from the conventional safety controllers, the Schmersal Group also offers microprocessorcontrolled safety technology.

Depending on the complexity and the number of safety circuits, integral solutions with safety monitoring modules, safety controls or safety field bus systems featuring many visualisation and diagnostic possibilities are available.

Safety controllers for electronic sensors and interlocks

Selection table

Type	Operating voltage	Category EN 954-1	Sensor inputs	Stop category	Signal contacts	Diagnostic outputs	Reset Options	Refer to page
AES 1135	24 VDC	3	2 P	$1 \times$ Stop 0	-	$2 \times 100 \mathrm{~mA}$	- Manual without edge detection - Automatic	51
AES 1235	24 VDC	3	2 P	$2 \times$ Stop 0	-	$2 \times 100 \mathrm{~mA}$	- Manual without edge detection - Automatic	52
SRB 031MC	24VAC/DC	4	2P	$3 \times$ Stop 1	$1 \times 2 A$	-	- Manual without edge detection - Automatic	53
SRB 301LC/B	24VAC/DC	4	2 P	$3 \times$ Stop 0	1 x 2 A	-	- Manual without edge detection - Automatic	54
SRB 301MC	24VAC/DC	4	2 P	$3 \times$ Stop 0	$1 \times 2 \mathrm{~A}$	-	- Manual without edge detection - Automatic	55
SRB 304ST	24VAC/DC	4	2 P	$3 \times$ Stop 0	1 x 2 A	$3 \times 100 \mathrm{~mA}$	- Manual with edge detection - Automatic	56
SRB 324ST	24VAC/DC	4	2 P	$3 \times$ Stop 0 $2 \times$ Stop 1 1... 30 s dropout delay	1 x 2 A	$3 \times 100 \mathrm{~mA}$	- Manual with edge detection - Automatic	57

The table above lists the programme of safety controllers, which are recommended for use with electronic safety sensors and solenoid interlocks.

Further details about suitable safety controllers, such as SRB 220XV2, SRB 301X4, SRB 302X3, SRB 320XV3 and SRB 504ST can be found at: www.elan.de.

AES 1135

- Classification PDF-M to EN 60947-5-3 in combination with BNS safety sensors
- Control category 3 to EN 954-1
- 1 enabling path
- Enable delay time can be modified
- Also suitable for monitoring magnetic safety sensors of the BNS series
- Can be changed from NO/NC to NC/NC contact combination
- Cross-wire monitoring with NO/NC combination
- ISD integral system diagnostic
- Operating voltage 24 VDC
- Short-circuit proof additional outputs
- Connection of input expander possible

Technical data

Standards:	IEC/EN 60204-1, EN 60947-5-3, EN 954-1, BG-GS-ET-14, BG-GS-ET-20
Stop category:	0
Category to EN 954-1:	3
Start conditions:	automatic
Start-up test:	no
Enclosure:	glass-fibre reinforced thermoplastic, ventilated
Mounting:	snaps onto standard DIN rail to DIN EN 50022
Connection:	screw terminals
Cable section:	max. $2.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)
Protection class:	IP 20 to EN 60529
U_{e} :	$24 \mathrm{VDC} \pm 15 \%$
$\underline{1}$ e:	0.2 A
Feedback circuit:	no
Input resistance:	approx. $4 \mathrm{k} \Omega$ to ground
Input signal "1":	$10 . .30$ VDC
Input signal "0":	$0 . . .2$ VDC
Max. cable length:	1000 m with $0.75 \mathrm{~mm}^{2}$ cable
Enabling contacts:	1 enabling path
Utilisation category:	AC-15, DC-13
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:	3 A / 250 VAC
	2 A / 24 VDC
Contact load capacity:	max. $250 \mathrm{VAC}, \max .6 \mathrm{~A}(\cos \varphi=1)$
Fuse rating:	6 A gG D fuse
Diagnostic output:	2 transistor outputs, $\mathrm{Y} 1+\mathrm{Y} 2=$ max. 100 mA , p-type, short-circuit proof
Function display:	LED (ISD)
EMC rating:	to EMC Directive
Max. switching frequency:	1 Hz
Overvoltage category:	Il to DIN VDE 0110
Degree of pollution:	3 to DIN VDE 0110
Resistance to vibration:	$10 \ldots 55 \mathrm{~Hz}$ / amplitude $0.35 \mathrm{~mm}, \pm 15 \%$
Resistance to shock:	$30 \mathrm{~g} / 11 \mathrm{~ms}$
Ambient temperature:	$0^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport temperature:	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Dimensions:	$22.5 \times 100 \times 121 \mathrm{~mm}$
Note:	Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit.

Approvals

Function table

Additional transistor output:

 Y1Y2

Function / switching condition:

Release, enabling paths closed
No release, enabling paths open

The following faults are recognised by the safety controller and indicated by means of ISD

- Failure of door contacts to open or close
- Cross-wire or short-circuit monitoring of the switch connections
- Interruption of the switch connections
- Failure of the safety relay to pull-in or drop-out
- Faults on the input circuits or on the relay control of the safety controller

AES 1235

- Classification PDF-M to EN 60947-5-3 in combination with BNS safety sensors
- Control category 3 to EN 954-1
- 2 enabling paths
- Enable delay time can be modified
- Also suitable for monitoring magnetic safety sensors of the BNS series
- Cross-wire monitoring with NO/NC combination
- ISD integral system diagnostic
- Short-circuit proof additional outputs
- Feedback circuit to monitor external relays
- Start function
- Operating voltage 24 VDC
- Can be changed from NO/NC to NC/NC contact combination
- Connection of input expander possible
- Additional contacts by means of output expander

Technical data

Standards:	IEC/EN 60204-1, EN 60947-5-3, EN 954-1, BG-GS-ET-14, BG-GS-ET-20
Stop category:	0
Category to EN 954-1:	3
Start conditions:	automatic or start button
Start-up test:	no
Enclosure:	glass-fibre reinforced thermoplastic, ventilated
Mounting:	snaps onto standard DIN rail to DIN EN 50022
Connection:	screw terminals
Cable section:	max. $2.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)
Protection class:	IP 20 to EN 60529
U_{e} :	$24 \mathrm{VDC} \pm 15 \%$
I_{e} :	0.2 A
Feedback circuit:	yes
Input resistance:	approx. $4 \mathrm{k} \Omega$ to ground
Input signal "1":	$10 . .30$ VDC
Input signal "0":	$0 . . .2$ VDC
Max. cable length:	1000 m with $0.75 \mathrm{~mm}^{2}$ cable
Enabling contacts:	2 enabling paths
Utilisation category:	AC-15, DC-13
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:	3 A / 250 VAC
	2 A / 24 VDC
Contact load capacity:	max. $250 \mathrm{VAC}, \max .6 \mathrm{~A}(\cos \varphi=1)$
Fuse rating:	6 A gG D fuse
Diagnostic output:	2 transistor outputs, $\mathrm{Y} 1+\mathrm{Y} 2=$ max. 100 mA , p-type, short-circuit proof
Function display:	LED (ISD)
EMC rating:	to EMC Directive
Max. switching frequency:	1 Hz
Overvoltage category:	Il to DIN VDE 0110
Degree of pollution:	3 to DIN VDE 0110
Resistance to vibration:	10 ... 55 Hz / amplitude 0.35 mm , $\pm 15 \%$
Resistance to shock:	$30 \mathrm{~g} / 11 \mathrm{~ms}$
Ambient temperature:	$0^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport temperature:	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Dimensions:	$22.5 \times 100 \times 121 \mathrm{~mm}$
Note:	Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit

Approvals

Function table

Additional transistor output: Y1

Y2

Function / switching condition:

Release, enabling paths closed
No release, enabling paths open

The following faults are recognised by the safety controller and indicated by means of ISD

- Failure of door contacts to open or close
- Cross-wire or short-circuit monitoring of the switch connections
- Interruption of the switch connections
- Failure of the safety relay to pull-in or drop-out
- Faults on the input circuits or on the relay control of the safety controller

SRB 031MC

- Processing of signals from potential-free outputs, e.g. emergency stop command devices, interlocking equipment, etc.
- Processing of signals from outputs of magnetic safety switches and outputs connected to potentials (AOPD's) depending on the execution
- 1 or 2-channel control
- Optionally cross-wire detection (through switch)
- 3 enabling paths, stop 1
- 1 diagnostic contact (NC)
- Switching capacity of the enabling contacts 8 A
- Automatic reset, manual reset without edge detection
- Green LED indications for relay K1, K2, supply voltage U_{B} and internal fuse U_{i}
- Control category 4 to EN 954-1 depending on the execution

Technical data

Standards:
IEC/EN 60204-1, EN 60947-5-3, EN 954-1, BG-GS-ET-14, BG-GS-ET-20 Stop category:
Category to EN 954-1: 4
Start conditions: automatic or start button
Enclosure: glass-fibre reinforced thermoplastic, ventilated

Connection and cable section:
Solid strand lead: rigid or flexible (with or without conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
Multi-strand lead with the same section:
flexible (with or without TWIN conductor ferrules) $0.5 \ldots 1.5 \mathrm{~mm}^{2}$
rigid or flexible (with plastic-free conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ 24 VDC -15\%/+20\%, residual ripple max. 10\% 24 VAC -15\% /+10\%
Frequency range: $50 / 60 \mathrm{~Hz}$

Protection class:
terminals: IP20, enclosure: IP40, mounting compartment: IP54 to EN 60529
Power consumption:
Fuse rating: internal electronic fuse, tripping current $>0.5 \mathrm{~A}$ Reset after approx. 1 s
Feedback circuit:
yes
Enabling contacts:
$3 x$ stop 1
Utilisation category: AC-15, DC-13: EN 60 947-5-1
Max. switching capacity: $\quad 250 \mathrm{~V}, 8 \mathrm{~A}$ ohmic (inductive with appropriate protective wiring), AC-15: 230 VAC/6 A, DC-13: 24 VDC/1.2 A

Residual current at ambient temperature: up to: $-45^{\circ} \mathrm{C}=24 \mathrm{~A} ;-55^{\circ} \mathrm{C}=18 \mathrm{~A} ;-60^{\circ} \mathrm{C}=12 \mathrm{~A}$

Min. switching capacity:	min. $10 \mathrm{~V} / 10 \mathrm{~mA}$
Fuse rating:	8 A gG D fuse
Auxiliary contacts:	$45-46$
Switching capacity:	$24 \mathrm{VDC}, 2 \mathrm{~A}$
Fuse rating:	2 A gG D fuse
Switching capacity:	$\mathrm{min} .10 \mathrm{~V} / 10 \mathrm{~mA}$

Contact material:
Contact resistance:
Pull-in delay:
AgSnO, AgNi, self-cleaning, positive action max. $100 \mathrm{~m} \Omega$ in new condition

Drop-out delay: in case power failure: $\leq 1.0 \mathrm{~s} \pm 30 \%$ at 24 VDC and duty cycle $>3.5 \mathrm{~s}$
Air clearances and creepage distances: IEC/EN 60 664-1 (DIN VDE 0110-1), $4 \mathrm{kV} / 2$
Overvoltage category: Il to DIN VDE 0110
Degree of pollution: 3 to DIN VDE 0110
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Mechanical life: 10 million operations
Function display: 4 LED
Weight: 250 g
Dimensions: $22.5 \times 100 \times 121 \mathrm{~mm}$

Note: Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit.

Approvals

焽 (U1) ${ }_{\text {us }}$	C

Ordering details
SRB 031MC-24V/(1)

No.	Replace	Description
(1)		Time delay:
	0.4 sec	0.4 seconds
	0.7 sec	0.7 seconds
	1.1 sec	1.1 seconds
	1.5 sec	1.5 seconds

C
Function table
The integrated LED's indicate the following operating conditions:

- Position relay K1
- Position relay K2
- Supply voltage UB
- Internal operating voltage U_{i}

SRB 301LC/B

- Processing of signals from potential-free outputs, e.g. emergency stop command devices, interlocking equipment, etc.
- Processing of signals from the outputs of magnetic safety switches (to this end, equipped with built-in current and voltage limitation)
- Restrictedly suitable for signal processing (no reset with edge detection) of outputs connected to potentials (AOPD's),
e.g. safety light grids/curtains
- 1 or 2 channel control
- 3 enabling paths, stop 0
- 1 diagnostic contact (NC)
- Manual reset without edge detection
- Automatic reset function
- Green LED indications for relay K1, K2, supply voltage UB and internal fuse Ui
- Control category 4 to EN 954-1

Technical data

Standards:	IEC/EN 60204-1, EN 954-1, BG-GS-ET-20
Stop category:	$3 x \operatorname{stop} 0$
Category to EN 954-1.	

Category to EN 954-1:
Start conditions: reset button without edge detection, auto start

Enclosure:

 glass-fibre reinforced thermoplasticConnection and cable section:
Solid strand lead: rigid or flexible (with or without conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
Multi-strand lead
with the same section:
flexible (without or with TWIN conductor ferrules) $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ rigid or flexible (with plastic-free conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ 24 VDC -15\%/+20\%, residual ripple max. 10\% 24 VAC -15\%/+10\%
U_{e} : $50 / 60 \mathrm{~Hz}$

	$24 \mathrm{VAC}-15 \% /+10 \%$
Frequency range:	$50 / 60 \mathrm{~Hz}$
$\mathrm{I}_{\mathrm{e}}:$	max. 0.08 A

Protection class: terminals IP 20, Enclosure IP 40 to EN 60529
Power consumption: max. 1.9 VA, 1.7 W
Fuse rating: glass fuse F1, tripping current 0.5 A

Monitored inputs:	1- or 2-channel
Feedback circuit:	yes

Control circuits: S11/S12, S21/S22: max. 28 VDC
Enabling contacts: 3 enabling paths
Utilisation category: AC-15, DC-13
Max. switching capacity: enabling paths: 6 A/230 VAC, 6 A/24 VDC

Fuse rating: enabling paths: 6 A gG D fuse
Max. switching frequency: 5 Hz

Diagnostic contacts:	1 NC contact
Switching capacity:	$2 \mathrm{~A} / 24 \mathrm{VDC}$

Fuse rating: 2 A gG D fuse

Contact material:
Contact resistance: $\quad \max .100 \mathrm{~m} \Omega$ in new condition
Pull-in delay: $\leq 30 \mathrm{~ms}$

	$\leq 30 \mathrm{~ms}$ (auto start/reset button)
Drop-out delay:	$\leq 50 \mathrm{~ms}$
Air clearances and creepage distances:	DIN VDE 0110-1 (04.97), $4 \mathrm{kV} / 2$
Overvoltage category:	III to DIN VDE 0110
Degree of pollution:	2 to DIN VDE 0110
Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$ (Derating curve on request)
Mechanical life:	10 million operations
Function display:	4 LED
Weight:	
Dimensions:	Inductive loads (e.g. contactors, relays, etc.) are Note:
	to be suppressed by means of a suitable circuit.

Approvals

앙 , (ulus C

Ordering details
SRB 301LC/B

C
Function table
The integrated LED's indicate the following operating conditions:

- Position relay K1
- Position relay K2
- Supply voltage UB
- Internal operating voltage U_{i}

SRB 301MC

- Processing of signals from potential-free outputs, e.g. emergency stop command devices, interlocking equipment, etc.
- Processing of signals from the outputs of magnetic safety switches and outputs connected to potentials (AOPD's) depending on the execution
- 1 or 2 channel control
- Optionally cross-wire detection (through switch)
- 3 enabling paths, stop 0
- 1 diagnostic contact (NC)
- Switching capacity of the enabling contacts 8 A
- Automatic reset, manual reset without edge detection
- Green LED indications for relay K1, K2, supply voltage U_{B} and internal fuse U_{i}
- Control category 4 to EN 954-1 depending on the execution

Technical data

Standards:
IEC/EN 60204-1, EN 60947-5-3, EN 954-1, BG-GS-ET-14, BG-GS-ET-20 Stop category:0
Category to EN 954-1: 4

Start conditions:
automatic or start button
Enclosure: glass-fibre reinforced thermoplastic, ventilated
Connection and cable section:
Solid strand lead: rigid or flexible (with or without conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
Multi-strand lead with the same section:
flexible (without or with TWIN conductor ferrules) $0.5 \ldots 1.5 \mathrm{~mm}^{2}$ rigid or flexible (with plastic-free conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ 24 VDC -15\%/+20\%, residual ripple max. 10\%

24 VAC -15\% /+10\%
Frequency range: $\quad 50 / 60 \mathrm{~Hz}$ (for AC operating voltage)
Protection class: terminals: IP20, enclosure: IP40, mounting compartment: IP54 to EN 60529
Power consumption:
Fuse rating: internal electronic fuse, tripping current $>0.5 \mathrm{~A}$ Reset after approx. 1 s
Feedback circuit:
yes
Enabling contacts:
$3 \times$ stop 0
Utilisation category: AC-15, DC-13: EN 60 947-5-1
Max. switching capacity: $\quad 250 \mathrm{~V}, 8 \mathrm{~A}$ ohmic (inductive with appropriate protective wiring), AC-15: 230 VAC/6 A, DC-13: 24 VDC/1.2 A

Residual current at ambient temperature
Up to: $-45^{\circ} \mathrm{C}=24 \mathrm{~A} ;-55^{\circ} \mathrm{C}=18 \mathrm{~A} ;-60^{\circ} \mathrm{C}=12 \mathrm{~A}$

Min. switching capacity:	$\mathrm{min} .10 \mathrm{~V} / 10 \mathrm{~mA}$
Fuse rating:	8 A gG D fuse
Auxiliary contacts:	$41-42$
Switching capacity:	$24 \mathrm{VDC}, 2 \mathrm{~A}$
Fuse rating:	2 A gG D fuse
Switching capacity:	$\mathrm{min}. \mathrm{10V/10mA}$

Contact
Contact resistance:

Pull-in delay:
AgSnO, AgNi, self-cleaning, positive action max. $100 \mathrm{~m} \Omega$ in new condition Drop-out delay:

Air clearances and creepage distances: IEC/EN 60 664-1 (DIN VDE 0110-1), $4 \mathrm{kV} / 2$
Overvoltage category: Il to DIN VDE 0110
Degree of pollution: 3 to DIN VDE 0110
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Mechanical life: 10 million operations
Function display: LED
Weight: 230 g
Dimensions: $22.5 \times 100 \times 121 \mathrm{~mm}$

Note: Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit.

Approvals

因 ${ }_{\text {cIV }}$ us	C

Ordering details

SRB 301 MC

C
Function table
The integrated LED's indicate the following operating conditions:

- Position relay K1
- Position relay K2
- Supply voltage UB
- Internal operating voltage U_{i}

SRB 304ST

- 3 enabling paths
- 1 additional acknowledgment contact (auxiliary contacts must not be used in safety circuits!)
- 3 diagnostic contacts
- Optionally:
- Trailing edge
- Automatic reset function
- Optionally cross-wire detection
- Hybrid fuse
- Green LED indications for relay K1, K2, supply voltage UB and internal fuse Ui
- Control category 4 to EN 954-1
- Plug-in terminals

Technical data

\section*{
 | St |
| :--- |
| C |
| E |
| C |
| |
| |}

IEC/EN 60204-1, EN 60947-5-3, EN 954-1, BG-GS-ET-14, BG-GS-ET-20 Stop category:0
Category to EN 954-1: 4
Enclosure: glass-fibre reinforced thermoplastic, ventilated

Connection and cable section:
Solid strand lead: rigid or flexible (with or without conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
Multi-strand lead with the same section:
Plug-in or print terminals: rigid or flexible (with plastic-free conductor ferrules) $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ flexible (without or with TWIN conductor ferrules) $0.5 \ldots 1.5 \mathrm{~mm}^{2}$
Cage clamps: flexible with TWIN conductor ferrules $0.5 \ldots 1.0 \mathrm{~mm}^{2}$
$\mathrm{U}_{\mathrm{e}}: \quad 24 \mathrm{VDC}-15 \% /+20 \%$, residual ripple max. 10% 24 VAC -15\% /+10\%

Frequency range:	$50 / 60 \mathrm{~Hz}$ (for AC operating voltage)
Protection class:	terminals: IP20, Enclosure: IP40, mounting compartment: IP54 to EN 60529
Power consumption:	4.8 W, 7.8 VA, plus signal output
Fuse rating:	electronic fuse, tripping current F1: > 2.5 A Tripping current F1: >1.0 A, reset after interruption of the supply voltage
Feedback circuit:	yes
Enabling contacts:	$3 \times$ stop 0
Utilisation category:	AC-15, DC-13: EN 60 947-5-1
Max. switching capacity: 250	(inductive with appropriate protective wiring), 34: AC-15: 230 VAC/6 A, DC-13: 24 VDC/6 A AC-15: 230 VAC/3 A, DC-13: 24 VDC/2 A
Fuse rating:	13-14, 23-24, 33-34: 8 A gG D fuse; 47-48, 57-58: 6 A gG D fuse
Auxiliary contacts:	41-42
Switching capacity:	24 VDC, 2 A
Fuse rating:	2 A gG D fuse
Diagnostic contacts:	signal outputs Y1-Y3
Switching capacity:	$24 \mathrm{VDC}, 100 \mathrm{~mA}$ / residual current 200 mA
Fuse rating:	100 mA gG D fuse
Contact material:	AgSnO, AgNi, self-cleaning, positive action
Contact resistance:	max. $100 \mathrm{~m} \Omega$ in new condition
Pull-in delay:	$\leq 30 \mathrm{~ms} ; \leq 200 \mathrm{~ms}$ (with automatic start)
Drop-out delay: in case of em	$\mathrm{p}: \leq 30 \mathrm{~ms}$; in case of power failure: $\leq 80 \mathrm{~ms}$
Air clearances and creepage distances:	IEC/EN 60 664-1 (DIN VDE 0110-1), $4 \mathrm{kV} / 2$
Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Mechanical life:	10 million operations
Function display:	LED
Weight:	420 g
Dimensions:	$45 \times 100 \times 121 \mathrm{~mm}$
Note:	uctive loads (e.g. contactors, relays, etc.) are be suppressed by means of a suitable circuit.

Approvals

閜 , (U) C

Ordering details
SRB 304ST

C
Function table
The integrated LED's indicate the following operating conditions:

- Position relay K1
- Position relay K2
- Supply voltage UB
- Internal operating voltage U_{i}

SRB 324ST

- Processing of signals from potential-free outputs, e.g. emergency stop command devices, interlocking equipment, etc.
- Processing of signals of outputs connected to potentials (AOPD's), e.g. safety light grids/curtains
- 1 or 2 channel control
- 5 enabling paths, two delayed: $1 . .30 \mathrm{~s}$
- 3 diagnostic outputs (semi-conductor outputs)
- With hybrid fuse
- Optionally:
- Cross-wire detection
- Automatic reset function
- Manual reset with edge detection in fail-safe circuit
- Green LED indications for relay K1, K2, K3, $K 4$, supply voltage U_{B} and internal fuse U_{i}
- Control category 4 to EN 954-1

Technical data

Standards:
IEC/EN 60204-1, EN 954-1, BG-GS-ET-20
Stop category: $3 x$ stop $0,2 x$ stop 1 (1 ... 30 s delayed)
Category to EN 954-1:
Start conditions:

N 954-1:	
ns:	S

Enclosure:
start, reset button (trailing edge) auto start
Connection and cable section:
Solid strand lead: rigid or flexible (with or without conductor ferrules) $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ Multi-strand lead with the same section:
Plug-in or print terminals: rigid or flexible (with plastic-free conductor ferrules) $0.25 \ldots 1.5 \mathrm{~mm}^{2}$ flexible (without or with TWIN conductor ferrules) $0.5 \ldots 1.5 \mathrm{~mm}^{2}$
Cage clamps: flexible with TWIN conductor ferrules $0.5 \ldots 1.0 \mathrm{~mm}^{2}$
$\mathrm{U}_{\mathrm{e}}: \quad 24 \mathrm{VDC}-15 \% /+20 \%$, residual ripple max. 10%

24 VAC -15\%/+10\%
Frequency range: $\quad 50 / 60 \mathrm{~Hz}$ (for AC operating voltage)
Ie:
Protection class:
Power consumption: max. 7.8 VA; 4.8 W; plus signal outputs Y1-Y3
Fuse rating: \quad F1: internal electronic fuse, tripping current $>2.5 \mathrm{~A}$
F2: internal electronic fuse, tripping current $>1.0 \mathrm{~A}$,
reset after interruption of the supply voltage
Monitored inputs: 1- or 2-channel
Feedback circuit: yes
Control circuits: S11/S12, S21/S22: max. 28 VDC
Enabling contacts: 5 enabling paths

Utilisation category:	AC-15, DC-13
Max. switching capacity: enabling paths "Stop 0": 6 A/230 VAC, 6 A/24 VDC	

Fuse rating:	enabling paths: 6 A gG D fuse
Auxiliary contacts:	$61 / 62:$
Switching capacity:	$2 \mathrm{~A} / 24 \mathrm{VDC}$
Fuse rating:	2 A gG D fuse
Max. switching frequency:	5 Hz

Diagnostic output: $\quad \mathrm{Y} 1-\mathrm{Y} 3: 100 \mathrm{~mA}$ in total

Contact material:	AgNi, AgSnO, self-cleaning, positive action
Contact resistance:	max. $100 \mathrm{~m} \Omega$ in new condition
Pull-in delay:	$\leq 30 \mathrm{~ms}$
Drop-out delay:	$\leq 30 \mathrm{~ms}$
Air clearances and creepage distances:	DIN VDE $0110-1(04.97), 4 \mathrm{kV} / 2$
Overvoltage category:	III to DIN VDE 0110
Degree of pollution:	2 to DIN VDE 0110
Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$ (Derating curve on request)
Mechanical life:	10 million operations
Function display:	6
Weight:	
Dimensions:	
Note:	Inductive loads (e.g. contactors, relays, etc.) are
	to be suppressed by means of a suitable circuit.

Approvals

雨 (UL) $)_{\text {us }} \quad$ CE

Ordering details
SRB 324 ST

Function table

The integrated LED's indicate the following operating conditions:

- Position relay K1
- Position relay K2
- Position relay K3
- Position relay K4
- Supply voltage U_{B}
- Internal operating voltage U_{i}

Download now

Suche／Milf

Sie befinden sich hier：
Startseite Sicheres Schalten und Erfassen 10

Merkmale：

－Steuerungskategorie 4 nach $\mathrm{EN} 954-1$ ，nur in Verbindung mit Sicherheitsbsustein SLB 400－C10－1R
－sehr kleine Bauform
－Reichweite bis 15 m
－Schutzart 1P 67
－Anschlussstecker drehbar
－wartungsfrei
－integrierte Verschmutzungskontrolle
－LED－Zustandsanzeige
－einfache，flexible Montage und Justage
［］Detail－Infos Web2CAD

Zubehör
SLB 200／400 Bodenstinder ST 1250
SLB 200／400 Bodeostinderfub STB 1
SLB 200／400 Montagewinkel fur Umlenkspiegel BF SMA 80－1
SLE 200／400 Hontagewinkal für Unilenkspiegel BF SMA 80－2
SLB 200／400 Nutenstein NST 20－6
SLB 200／400 Umienkspiegel SMA 80
SLB 400 Letiungsdose $M 12 \times 1$（mit Leitung）
SLB 400 Moctageminkel BF 50 für

Data sheets，mounting and wiring instructions， declarations of conformity and much more at： www．products．schmersal．com

Wiring examples for application and use

Series-wiring

Wiring examples for different sensor types

Wiring examples for application and use

Series-wiring of the CSS 34 with diagnostic output

The voltage is supplied to both safety inputs of the last sensor of the chain (starting from the safety controller). The safety outputs of the first sensor are wired to the safety controller.

Product selection

This examples applies to all CSS 34 sensor types with conventional diagnostic output

Safety sensor	Position of the active face	Cable
$\begin{aligned} & \text { CSS - } 14-34-S-D-M-L \\ & \text { CSS - } 12-34-V-D-M-L \end{aligned}$	on the side on top	8-wire 8-wire
Safety sensor	Position of the active face	Integrated connector
$\begin{aligned} & \text { CSS - } 14-34-S-D-M-S T \\ & \text { CSS - } 12-34-V-D-M-S T \end{aligned}$	on the side on top	8 pole 8 pole

Actuator	Position of the active face
CST $-34-\mathrm{S}-1$	on the side
CST $-34-\mathrm{V}-1$	on top

Legend

Wiring diagram for the CSS 34 safety sensors with integrated connector (ordering suffix -ST)

Wiring of the CSS 34 safety sensor with diagnostic output	Pin configuration of the connector	Colour of the cable with connector
A1 Ue A2 GND X1 Safety input 1 X2 Safety input 2 Y1 Safety output 1 Y2 Safety output 2 Diagnostic output Without function	Pin 1 Pin 3 Pin 2 Pin 6 Pin 4 Pin 7 Pin 5 Pin 8	Depending on the selected component, see accessories page 14
	$\left(\begin{array}{cccc} \bullet & 0 & \\ \bullet & 5 & 4 \bullet \\ \bullet 7 & \bullet & 8 & 3 \bullet \\ & 1 & & 2 \\ \bullet & & 0 \end{array}\right.$	

Wiring examples for application and use

Series-wiring of the CSS 34 with serial diagnostic cable

The safety outputs of the first sensor are wired to the safety controller. The serial Diagnostic Gateway is connected to the serial diagnostic input of the first sensor.

Product selection

This examples applies to all CSS 34 safety sensors with serial diagnostic

Safety sensor	Position of the active face	Cable
$\begin{aligned} & \text { CSS - } 14-34-S-S D-M-L \\ & C S S-12-34-V-S D-M-L \end{aligned}$	on the side on top	8-wire 8-wire
Safety sensor	Position of the active face	Integrated connector
$\begin{aligned} & \text { CSS - } 14-34-S-S D-M-S T \\ & C S S-12-34-V-S D-M-S T \end{aligned}$	on the side on top	8 pole 8 pole

Actuator	Position of the active face
CST $-34-$ S - 1	on the side CST $-34-V-1$

Legend

Wiring diagram for the CSS 34 safety sensors with integrated connector (ordering suffix -ST)

Wiring of the CSS 34 safety sensor with diagnostic output	Pin configuration of the connector	Colour of the cable with connector
A1 Ue A2 GND X1 Safety input 1 X2 Safety input 2 Y1 Safety output 1 Y2 Safety output 2 Diagnostic output Without function	Pin 1 Pin 3 Pin 2 Pin 6 Pin 4 Pin 7 Pin 5 Pin 8	Depending on the selected component, see accessories page 14
	$\begin{array}{ccc} \bullet 6 & 5 & 4 \bullet \\ \bullet & \bullet & 8 \\ \bullet & 3 & 3 \bullet \\ 0 & & 0 \\ \bullet & 0 \end{array}$	

Wiring examples for application and use

Single device CSS 34F0 with diagnostic output

Direct control of the positive-action relays
Automatic start through the feedback circuit
Optionally, an enabling switch can be integrated in the feedback circuit. The sensor is switched on when the button is pushed. Variant FO has no edge monitoring for the switch.

Product selection

This examples applies to all CSS 34F0 sensor types with conventional diagnostic output

Safety sensor	Description
CSS 12-34F0-S - D	Input for enabling switch
CSS 14-34F0-S - D	Suitable for automatic start
CSS 12-34F0-V-D	
CSS 14-34F0-V-D	
Actuator	Description
CST-34-S - 1	active face on the side
CST-34-V-1	active face on top

Legend

Wiring diagram for the CSS 34 safety sensors with integrated connector (ordering suffix -ST)

Wiring of the CSS 34 safety sensor with diagnostic output	Pin configura- tion of the connector	Colour of the cable with connector
A1 Ue	Pin 1	Depending on the
A2 GND	Pin 3	selected component,
X1 Safety input 1	Pin 2	see accessories page 14
X2 Safety input 2	Pin 6	
Y1 Safety output 1	Pin 4	
Y2 Safety output 2	Pin 7	
Diagnostic output	Pin 5	
Without function	Pin 8	

Wiring examples for application and use

Series-wiring of the CSS 34 and CSS 34F1 with conventional diagnostic outputs

Direct control of the positive-action relays
The internal safety controlling function of the CSS 34F1-... variant monitors the feedback contacts as well as the trailing edge of the reset button. The sensor switches when the button is released.

Product selection

This examples applies to all CSS 34 and CSS 34F1 sensor types with conventional diagnostic output

Safety sensor	Description
CSS 12-34-S-D	Standard execution
CSS 14-34-S - D	
CSS 12-34-V-D	
CSS 14-34-V-D	
CSS 12-34F1-S - D	Input for reset button,
CSS 14-34F1-S - D	with edge detection
CSS 12-34F1-V-D	
CSS 14-34F1-V-D	
Actuator	Description
CST-34-S-1	active face on the side
CST-34-V-1	active face on top

Legend

Wiring diagram for the CSS 34 safety sensors with integrated connector (ordering suffix -ST)

Wiring of the CSS 34 safety sensor with diagnostic output	Pin configuration of the connector	Colour of the cable with connector
A1 Ue A2 GND X1 Safety input 1 X2 Safety input 2 Y1 Safety output 1 Y2 Safety output 2 Diagnostic output Without function	Pin 1 Pin 3 Pin 2 Pin 6 Pin 4 Pin 7 Pin 5 Pin 8	Depending on the selected component, see accessories page 14

Wiring examples for application and use

Single device CSS 34F0 with conventional diagnostic output

Wiring with auxiliary relay to control high-capacity contactors
The NC contacts of the load-switching contactors are monitored.
Optional executions of the feedback circuit with one button, see wiring examples on previous pages.

Product selection

This examples applies to all CSS 34F0 sensor types with conventional diagnostic output

Safety sensor	Description
CSS 12-34F0-S - D	Input for enabling button
CSS 14-34F0-S - D	Suitable for automatic start
CSS 12-34F0-V-D	
CSS 14-34F0-V-D	
Actuator	Description
CST-34-S - 1	active face on the side
CST-34-V-1	active face on top

Legend

Wiring diagram for the CSS 34 safety sensors with integrated connector (ordering suffix -ST)

Wiring of the CSS 34 safety sensor with diagnostic output	Pin configura- tion of the connector	Colour of the cable					
with connector			$	$	A1 Ue	Pin 1	Depending on the
:---	:---	:---					
A2 GND	Pin 3	selected component,					
X1 Safety input 1	Pin2	see accessories page 14					
X2 Safety input 2	Pin 6						
Y1 Safety output 1	Pin 4						
Y2 Safety output 2	Pin 7						
Diagnostic output	Pin 5						
Without function	Pin 8						

Wiring examples for application and use

Series-wiring of the CSS 180 with common cable for safety inputs and outputs

The first end/terminal sensor CSS-8-180-...-E-L has no safety inputs.
The CSS-7-180LC-2P-E-L optionally can be used as end/terminal sensor. It has no safety inputs or diagnostic outputs.

Product selection

This example requires " E " and " M " type sensors

Safety sensor	Connection
CSS - 7 -180LC-2P-E-L	Connecting cable, 4-wire
CSS - 8-180-2P-E-L	Connecting cable, 4-wire
CSS - 8-180-2P-E-LST	Connecting cable, 4-wire with connector M12 x 1, 4-pole
CSS - $8-180-2 P+D-E-L$	With diagnostic output, connecting cable 5-wire
CSS - 8-180-2P + D-E-LST	With diagnostic output, connecting cable, 5 -wire, with connector M12 $\times 1$, 5 poles
CSS - 8-180-2P + D-M-L	With diagnostic output, connecting cable, 7 -wire
CSS - 8-180-2P + D-M - LST	With diagnostic output, connecting cable, 7 -wire, connector M12 x 1, 8 poles

Legend

Wiring of the CSS 180 safety sensors with an "E" in the ordering code (end or single device)

Colour of the connecting cable	Wiring	Pin configuration of the connector
BN (brown) A1 Ue Pin 1 BU (blue) BK (black) A2 GND WH (white) Y1 Safety output 1 Y2 Safety output 2		
Only 5-pole version: GY (grey)	Piagnostic output (option)	Pin 4

Wiring of the M-type sensors (multifunctional connection), see next page

Wiring examples for application and use

Series-wiring of the CSS 180 with common cable for the safety inputs and outputs

The safety inputs of the last sensor ("M" type) starting from the safety controller are also used for the series-wiring. The voltage for the safety channels is supplied here.

Product selection

This example exclusively requires M-type sensors
Single device or end/terminal device of a sensor chain

Safety sensor	Connection
CSS $-8-180-2 P+$ D-M - L	With diagnostic output, connecting cable, 7-wire
CSS -8-180-2P + D-M - LST	With diagnostic output, connecting cable, 7-wire, connector M12 $\times 1,8$ pole

Legend

Wiring of the CSS 180 safety sensors with an " M " in the ordering code (device with multifunctional connection)

Colour of the connecting cable	Wiring	Pin configuration of the connector
BN (brown)	A1 Ue	Pin 1
BU (blue)	A2 GND	Pin 3
VT (violet)	X1 Safety input 1	Pin 6
WH (white)	X2 Safety input 2	Pin 2
BK (black)	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Pin 7
GY (grey)	Diagnostic output	Pin 5
-	spare	Pin 8

Wiring examples for application and use

Series-wiring of the CSS 180 with different cable for the safety inputs and outputs

Without diagnostic output

The first end/terminal sensor CSS-8-180-...-E-L has no safety inputs (wiring, see page 17).

Product selection

This examples applies to all CSS 180 safety sensors with a " Y " in the ordering code

Safety sensor	Connection
CSS - 8-180-2P-Y-L	2 cables, 4-wire
CSS - 8-180-2P-Y -LST	2 cables, connecting cable with male/female connector, M12 x 1, 4-pole

Legend

Wiring of the CSS 180 safety sensors with a " Y " in the ordering code (series-wiring device)

Colour of the connecting cable	Wiring of the grey cable (IN)	black cable (OUT)	Pin configura- tion of the connector
BN (brown) A1 Ue A1 Ue Pin 1 BU (blue) A2 GND A2 GND Pin 3 BK (black) X1 Safety input 1 Y1 Safety output 1 Pin 4 WH (white) X2 Safety input 2 Y2 Safety output 2 Pin 2$.$When			

Connector female male

Wiring examples for application and use

Single device AZM 200.-T-1P2P.

Wiring example: up to control category 4

Product selection

This example applies to the AZM 200 electronic solenoid interlock

Solenoid interlock	Description
AZM 200..-T-1P2P.	1 diagnostic output

Legend

Wiring of the AZM 200 electronic solenoid interlock

Clamp	Wiring AZM 200 solenoid interlock	Pin configuration of the connector
24 V	Rated operating voltage	Pin 1
GND	Ground	Pin 3
X1	Safety input 1	Pin 2
X2	Safety input 2	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Diagnostic output	Pin 5
IN	Solenoid control	Pin 8
-	spare	Pin 9

Wiring of the AZ 200 electronic safety switch with separate actuator Identical to the wiring diagram above for the AZM 200, only the solenoid interlock "IN" control becomes inoperative.

Wiring examples for application and use

Series-wiring of the AZM 200 electronic solenoid interlock

With the represented power-to-unlock principle, the solenoid is energised to enable the opening.
With the alternative power-to-lock principle (not represented), the solenoid must be energised to keep the device in closed condition.

Product selection

This example applies to the AZM 200 electronic solenoid interlock

Solenoid interlock	Description
AZM 200..-T-1P2P.	1 diagnostic output with power-to-unlock principle 1 diagnostic output with power-to-lock principle
AZM 200..-T-1P2P.a	

Legend

Wiring of the AZM 200 electronic solenoid interlock

Clamp	Wiring AZM 200 solenoid interlock	Pin configuration of the connector
24 V	Rated operating voltage	Pin 1
GND	Ground	Pin 3
X1	Safety input 1	Pin 2
X2	Safety input 2	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Diagnostic output	Pin 5
IN	Solenoid control	Pin 8
-	spare	Pin 9

Wiring of the AZ 200 electronic safety switch with separate actuator Identical to the wiring diagram above for the AZM 200, only the solenoid interlock "IN" control becomes inoperative.

Wiring examples for application and use

Series-wiring of the AZM 200 with serial diagnostic outputs

AZM 200.-T-SD2P.

Wiring example: series-wiring up to control category 4

Product selection

This example applies to the AZM 200 electronic solenoid interlock

Solenoid interlock	Description
AZM 200..-T-SD2P.	Serial diagnostic output and 2 safety outputs, p-type

Legend

Wiring of the AZM 200 electronic solenoid interlock

Clamp	Wiring AZM 200 solenoid interlock	Pin configuration of the connector
24 V	Rated operating voltage	Pin 1
GND	Ground	Pin 3
X1	Safety input 1	Pin 2
X2	Safety input 2	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Diagnostic output	Pin 5
IN	Solenoid control	Pin 8
-	spare	Pin 9

Wiring examples for application and use

Series-wiring of the MZM 100 with diagnostic output

The voltage is supplied to both safety inputs of the last magnetic interlock in the chain (starting from the safety controller). The safety outputs of the first magnetic interlock are wired to the safety controller.

Product selection

This examples applies to the MZM 100 electronic magnetic interlock

Magnetic interlock	Description
MZM 100ST-1P2P.a...	1 diagnostic output with power-to-lock principle

Legend

Wiring of the MZM 100 electronic magnetic interlock

Pin configuration	Wiring of the magnetic interlock with diagnostic output
Pin 1	A1 \quad Ue
Pin 2	X1
Pin 3	A2
GND	

Pin $4 \quad$ Y1 \quad Safety output 1
Pin $5 \quad$ OUT Diagnostic output
Pin $6 \quad$ X2 Safety input 2

Pin 7	Y2	Safety output 2

Pin 8 IN Solenoid control
Pin $9 \quad$ spare

Wiring examples for application and use

Series-wiring of the MZM 100 with serial diagnostic cable

The safety outputs of the first magnetic interlock are wired to the safety controller.
The PROFIBUS-Gateway is connected to the serial diagnostic input of the first magnetic interlock.

Product selection

This examples applies to the MZM 100 electronic magnetic interlock

Magnetic interlock	Description
MZM 100ST-SD2P.a...	Serial diagnostic output with power-to-lock principle

Legend

Wiring of the MZM 100 electronic magnetic interlock

Pin configuration	Wiring of the magnetic interlock with serial diagnostic
Pin 1	A1 Ue
Pin 2	X1 Safety input 1
Pin 3	A2 GND

Wiring examples for application and use

Series-wiring of various sensors and solenoid interlocks with diagnostic output

The CSS 180, CSS 34, MZM 100, AZ 200 and AZM 200 can be wired in series in any desired combination. For the CSS 180, 16 devices can be wired in series; for the CSS 34 and AZM 200, max. 31 devices. If the CSS 180 is used in a "mixed" series-wiring, the maximum number of series-wired devices is limited to 16.

Product selection

This example applies to the following series-wired devices.

Device	Description
$\begin{aligned} & \text { CSS }-8-180-2 P+D-E-L \\ & \text { with } \\ & \text { CST - 180-1 } \end{aligned}$	With diagnostic output, connecting cable 5-wire Actuator
$\text { CSS - } 14-34-S-D-M-L$ with $\text { CST - } 34-S-1$	Position of the active face: on the side, connecting cable, 7 -wire Actuator, on the side
AZM 200..-T-1P2P.a	1 Diagnostic output with power-to-lock principle

Legend

Wiring diagram of the represented devices: see previous pages:

Wiring diagram of the CSS 180, page 17.

Wiring diagram of the CSS 34, page 14.

Wiring diagram of the AZM 200, page 23.

Around the clock

Always up-to-date, the online catalogue at: www.products.schmersal.com

Connection of sensors and interlocks to various safety controllers

Wiring examples
Connection of sensors and interlocks to various safety controllers

Connection of sensors and interlocks to various safety controllers

Safety outputs Y1/Y2

The safety outputs Y1/Y2 must be connected to the safety controller in the following way:

Sensors/	Safety	Safety
Solenoid interlock	output 1	output 2

CSS 180	Y 1	Y 2
CSS 34	Y 1	Y 2
AZ 200	Y 1	Y 2
AZM 200	Y 1	Y 2
MZM 100	Y 1	Y 2
To be connected to		

Safety controlle	Safety channel 1	Safety channel 2	Feedback/Start contact connection	Start contact	Notes bridge	$\begin{aligned} & \text { See } \\ & \text { page } \end{aligned}$
AES 1135	S 14	S 22	-	-	A1-X2	77
AES 1235	S 14	S 22	A1-X1	-	A1-X2	77
SRB 031MC	S 12	S 22	X1-X2	X1-X2	-	78
SRB 301LC/B	S 12	S 22	X1-X2	X1-X2	-	78
SRB 301MC	S 12	S 22	X1-X2	$\mathrm{X} 1-\mathrm{X} 2$	-	79
SRB 304ST	S 12	S 32	X1-X2	X3-X4	S22-S21	79
SRB 324ST	S 12	S 32	X1-X2	X3-X4	S22-S21	80

Note:
The following drawings apply for the wiring of sensors (CSS 34) and solenoid interlocks (AZM 200 and MZM 100). Sensor and safety controller require the same mass potential.

The wiring examples are represented with the safety guards closed and in de-energised condition.

The shown application examples are suggestions. The user however must carefully check if the configuration is suitable for his specific application.

Connection of sensors and interlocks to various safety controllers
Connection of an AZM 200 solenoid interlock to the AES 1135 safety controller

AES 1135 requires a bridge between A 1 and X 1 , to work with two NC contacts (AZM 200).

Connection of an AZM 200 solenoid interlock to the AES 1235 safety controller

Connection of sensors and interlocks to various safety controllers
Connection of an AZM 200 solenoid interlock to the SRB 031MC safety controller

Connection of an AZM 200 solenoid interlock to the SRB 301LC/B safety controller

Connection of sensors and interlocks to various safety controllers
Connection of an AZM 200 solenoid interlock to the SRB 301MC safety controller

Connection of an AZM 200 solenoid interlock to the SRB 304ST safety controller

Connection of sensors and interlocks to various safety controllers
Connection of an AZM 200 solenoid interlock to the SRB 324ST safety controller

www.schmersal.com

You will also find detailed information regarding our product variety on our website: www.schmersal.com

Online documentation in six languages

The online catalogue for our customers is permanently updated. The Main Catalogue can be consulted on the Internet in as much as six languages. The technical data of our entire product range are available 24/7, always up-todate. The declarations of conformity, the test certificates and the mounting instructions can be consulted and downloaded as well.

Service for designers

The online catalogue also includes the technical drawings of our products - a special service to designers. In this way, they can be downloaded and directly fed in CAD-systems. The Schmersal Homepage furthermore contains up-todate information on general subjects, technical articles on machine safety as well as news regarding events and trainings. To be bookmarked!

The direct way

If you need further information or you want personal advice, you can call us as well: Tel. +49-(0) 2 02-64 74-0.

We are at your disposal!

[^0]: ${ }^{1)}$ after 30 min -> error
 2) refer to flash codes
 ${ }^{3)}$ version-1P2PV: 0 V

